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On-Screen Viewing
We recommend using Adobe Acrobat or the free 
Adobe Reader to view this ebook. Apple Preview and 
other third-party PDF viewers may also work, but 
many of them do not support the latest PDF features. 
For best results, use Adobe Acrobat/Reader.
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from either the Table of Contents on the first page 
or from the PDF Bookmarks. In Adobe Reader, the 
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Apple Preview, the PDF Bookmarks are located in a 
drawer (Command-T to open).

If your mouse cursor turns into a hand icon when 
hovering over some text, that indicates the text is a 
hyperlink.  Table of Contents links jump to a specific 
page within the ebook when clicked.  Text links 
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an external web site or FTP server when clicked 
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Setup) to print pages sideways on standard 8.5” x ” 
paper.  If the Orientation option does not label the 
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Requirements
The collection of companion project files from this 
book are contained in a download called LearnC-
Projects.sit, which can be downloaded from the 
SpiderWorks Customer Download Center at:

http://www.spiderworks.com/extras/ 

To login, you will need your Customer Username 
and Password that was listed in your order 
confirmation e-mail.

Installation
Once you have downloaded and decompressed 
LearnC-Projects.sit (using Stuffit Expander), you 
will see a directory called Learn C Projects. Nested 
inside that directory are further subdirectories 
labeled for the chapter to which the project files 
apply. Not all chapters have project files in the 
Learn C Projects collection. Move the Learn C 
Projects directory to a convenient location on your 
hard disk from which you can open the files with 
Apple's Xcode Tools.

http://www.spiderworks.com/extras/
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elcome! Chances are, you are reading this because 
you love the Macintosh. And not only do you love 
the Mac, but you also love the idea of learning how 
to design and develop your very own Mac programs.

You’ve definitely come to the right place.

This book assumes that you know how to use 
your Macintosh. That’s it. You don’t need to know 
anything about programming. Not one little bit. We’ll 
start off with the basics and each step we take will be 
a small one to make sure that you have no problem 
following along.

This is the first in a series of books designed to teach 
you how to design and build your own Macintosh 
applications. The first book will focus on the basics of 
programming. At the same time, you’ll learn C, one 
of the most widely used programming languages in 
the world. And once you know C, you’ll have a leg up 
on learning programming languages like C++, Java, 
Objective-C and Microsoft’s new C# (pronounced C-
sharp), all of which are based on C. If you are going 
to write code these days, chances are you’ll be writing 

it in C or in one of these other languages.

Once you get through the first few books, you’ll be 
ready to move on to object oriented programming 
and Objective-C, the official language of Mac OS 
X. Not to worry. Each book takes the same basic 
approach: small steps, nobody gets lost. You can 
definitely do this! 
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Who is This Book For?
When I wrote the very first edition of Learn C 
back in 99, I was writing with college students in 
mind. After all, college was where I really learned to 
program. Hrm. Seems I was way off. My first clue 
that I had underestimated my audience was when I 
started getting emails from fifth graders who were 
making their way through the book. Fifth graders! 
And not just one. Lots of 9, 0,  year old kids were 
digging in and learning to program. Cool! And the 
best part of all was when these kids started sending 
me actual shipping products that they created. You 
can’t imagine how proud I was and still am.

Over the years, I’ve heard from soccer moms, 
hobbyists, even from folks who were using the Mac 
for the very first time, all of whom made their way 
through Learn C and came out the other end, proud, 
strong, and full of knowledge. 

So what do you need to know to get started? 
Although it is possible to learn C just by reading a 
book, you’ll get the most out of this book if you run 
each example program as you encounter it in the 
book. To do this, you’ll need a Macintosh running 
Mac OS X (preferably version 0.3 or later) and 
an internet connection. You’ll need the internet 
connection to download the free tools Apple 
has graciously provided for anyone interested in 
programming the Mac. 

If you know nothing about programming, don’t 
worry. The first few chapters of this book will bring 

you up to speed. If you have some programming 
experience (or even a lot), you might want to skim 
the first few chapters, then dig right into the C 
fundamentals that start in Chapter 3.

Ready to get started? Let’s go…
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efore we dig into the specifics of programming, you’ll 
need to download a special set of tools from Apple’s 
web site. The good news is, these tools are absolutely 
free – Cool! And more importantly, Apple’s tools 
give you absolutely everything you’ll need to create 
world class Macintosh programs, whether they be 
written in C, Objective C, Java, or even C++. And did 
I mention that these awesome tools are free?

Before you start downloading the tools, be aware that 
this is one big download. The version I downloaded 
today was broken into 13 segments, most of which 
were about 29 megabytes each, for a total download 
of more than 372 megabytes. Ouch!

Obviously, you won’t want to tackle this task via a 
dialup, and you’ll want to make sure you have plenty 
of hard drive space available before you begin.

If you don’t have the bandwidth, there is an 
alternative! Follow all the steps for creating an 
account and logging in to Apple’s ADC web site 
below. Then, instead of clicking on the Download 
Software link, click on the Purchase link instead. At the 
bottom-right of the page that appears, click on the 
Developer Tools button. This will take you to a page 
where you can buy the tools CD. Cool!
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To gain access to these tools, go to Apple’s web site 
and sign up as a member of the Apple Developer 
Connection (ADC) program. Here’s a link to the front 
page of the ADC site:

http://developer.apple.com

You’ll want to bookmark this page in your browser 
so you can refer to it later. In fact, you might want to 
create a Learn C bookmark folder in your browser 
just for web sites we mention in this series. 

Don’t let the sheer volume of information on this site 
overwhelm you. Over time, it will start to make a lot 
more sense. For now, let’s get in, get the tools, then 
get out. No need to linger just yet.

Create an ADC Account
Before Apple will let you download the tools, you’ll 
first need to join ADC (remember, it’s free!) To join, 
click on the Not a Member? link in the grey bar 
towards the top of the page. This will bring you to 
the Membership Overview page. This page tells you 
about the different ADC memberships available. For 
now, we’ll take the Online membership option. The 
Online option is free and still gives us access to the 
tools we’ll need.

To start the sign up process, click on the blue link 
that says Apple Developer Connection member or 
just go to this page:

http://connect.apple.com

Click the button labeled Join ADC Now.

Read the license agreement, then click on the Agree 
button.

Next, you’ll be prompted to enter your name and 
email address and to select an Apple ID and a 
password. Pretty straightforward.

Once you’ve entered and confirmed your password, 
click the Continue button.

If your Apple ID is already taken, a red error message 
will appear. Pick a different Apple ID and try again. 
Eventually, you’ll find one that isn’t already used.

The next step is to provide clues in case you forget 
your password. You’ll provide your birth date, a 
question Apple can ask you, and the answer to the 
question. Click the Continue button.

Next, you’ll come to a page that asks you to fill out 
your Developer Account Profile. Do this, then click 
the Save button.

That should do it. Congratulations, you are now a 
proud member of Apple Developer Connection! Be 
sure to copy down your Apple ID and your password. 
You’ll need this info every time you come back to the 
site.

http://developer.apple.com
http://connect.apple.com
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Download the Tools
Once you have your Apple ID, you can login to the 
ADC site by going to this link:

http://connect.apple.com

This is the page with the Join ADC Now button. On 
the right side of that page is a place for you to type 
in your Apple ID and Password. Click the Continue 
button to login. 

Figure 2. Once logged in to ADC, click this link to 
download software.

Once you are logged in, you’ll see a list of links 
similar to those shown in Figure 2-. Click on the 
Download Software link. This will take you to a page 
listing the most recent tools available for download. 
Scroll down the list looking for something titled 
Xcode Tools, followed by a version number.

If you don’t see any Xcode downloads available 
on the main Download Software page, click on 
the Developer Tools link that appears below the 
Download Software link to reveal a more extensive 
list of downloads (see Figure 2-2). 

Figure 2.2 You may find Xcode in the Developer Tools 
section.

Figure 2-3 shows the download section for Xcode 
Tools v.5, which was the most recent version of 
Xcode available when I wrote this chapter.

http://connect.apple.com
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Figure 2.3 When I wrote this chapter, this was the latest 
version of Xcode available for download.

Downloading the Segments
At this point, you’ve signed up for an ADC account, 
logged in, and located the Xcode tools. Chances are, 
you’ll see something like the screenshot shown in 
Figure 2-3. Feel free to download the Read Me, but 
the real goal is to download either the full CD image, 
hidden behind the first Download button, or the set 
of segments that make up the Xcode Tools .5 CD, 
hidden behind the second Download button. 

When you click on either Download button, Mac 
OS X will attempt to connect to an FTP server using 
whatever you have defined as your default FTP 
application. If you’ve never used an FTP application 
before, you might want to either find an FTP-savvy 
buddy who can help you through this process or click 
the Purchase link (as described at the beginning of 
the chapter) and order the Xcode CD from Apple.
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Note that your browser may try to handle FTP 
requests all by itself. Safari, for example, will 
download single files without help, but will hand off a 
request for a directory of files to the default FTP client.

If you don’t own an FTP application, the Finder can 
do the job for you. For example, when I clicked on 
the Download button in my browser window,  the 
window shown in Figure 2-4 appeared, then a server 
named segments appeared on my desktop, just like a 
newly mounted hard drive. 

Figure 2.4 This window appears when the Finder tries 
connecting to Apple’s server.

If you double-click on the segments icon, a Finder 
window will appear listing all the files you need 
to download. Create a new folder (I called mine 
Xcode parts) and drag all the files from the segments 
window to that new folder. The files for Xcode .5 
took up about 372 megabytes of hard drive space 
(be sure you have enough space on your hard drive 
before you start – In fact, be sure you have at least 
a couple of gigabytes free, just to be safe) and took 
about 45 minutes to copy using a cable modem. Your 
mileage may vary!

That said, I’ve found that using the Finder as an 
FTP client a hit-or-miss proposition. An application 
specifically written to do FTP will get the job done 
much more quickly.

There are a number of excellent FTP clients that 
run under Mac OS X. One that I’ve been using for a 
number of years is called Interarchy. You can find it at:

http://www.interarchy.com

Interarchy is amazing! It handles pretty much 
everything I throw at it (including FTP, SFTP, HTTP, 
ping, traceroute, DNS lookup, and packet sniffing), 
and is both fast and reliable. When you download 
Interarchy, it automatically runs in demo mode 
allowing you to test it before you buy it.

If you do run Interarchy, when it asks you if you want 
it to be your default FTP application, say yes. Now, if 
you go back to the ADC site and click the Download 
button again, your web browser should use 
Interarchy to open the server instead of the Finder.

Putting Mr. Dumpty Back Together Again
Whether you used the Finder or an FTP client like 
Interarchy,  at this point, you should have a folder 
on your hard drive containing one file ending with 
.dmg and a series of consecutive files ending with 
.dmgpart. Figure 2-5 shows my Finder listing after 
I downloaded the parts that make up the Xcode 
version .5 installer. If you downloaded the archive as 
a single piece, instead of in segments, you can skip 

http://www.interarchy.com
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down a few paragraphs to where I tell you to double-
click the Xcode Tools icon.

Important - Things change! The most recent version 
of the ADC web site only offers Xcode Tools v1.5 as 
a single archive, not as a series of .dmgparts. By the 
time you read this, there may be a newer version of 
Xcode, done as a single file or multiple parts. Use your 
noodle, download the latest, you’ll be fine. I’ll make 
sure that the Learn C projects are always updated 
with the latest and greatest release (i.e., non-beta) 
version of Xcode.

Note that there is only one .dmg file. Once all the 
pieces are in place, drop the .dmg.bin file onto the 
StuffIt Expander icon. 

Figure 2.5 The segments that go together to make the 
Xcode .5 installer.
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Looking for StuffIt Expander? Chances are good it is 
already on your hard drive. If not, you’ll find the latest 
version here:

http://www.stuffit.com/mac/

StuffIt Expander will do the right thing. First, it will 
search to make sure you have all the parts needed 
to reassemble the Xcode installer. Then, it will 
start patching things together until the .dmg file is 
reassembled. A .dmg file is a mountable disk-image, 
like a fake hard drive. Once the .dmg file is mounted, 
a new volume should appear on your desktop with 
the name Xcode Tools (or something quite similar).

Double-click the Xcode Tools disk icon. A new Finder 
window will appear, listing the contents of the disk. 
There will be a series of PDF files that talk about 
the contents of the package, folders containing the 
files to be installed, and a master installer file called 
Developer.mpkg (see Figure 2-6).

Figure 2.6 The Xcode installer and associated files. 
Woohoo!

This is the moment you’ve been waiting for! Double-
click Developer.mpkg and install the tools. As you 
would with any installer, click Continue a few times, 
then click Agree (assuming you agree with the 
license agreement). Select a hard drive on which to 
perform the installation (you’ll need about 00 Meg 
of additional space), type in your Admin password 
when prompted for it, then you are off to the races.

Congratulations! You’ve just installed the Mac OS X 
developer tools.

If you run into problems during this process, be sure 
to head over to http://www.spiderworks.com  and 
check out the support page for this book.

http://www.stuffit.com/mac/
http://www.spiderworks.com
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Take Your Tools for a Test Drive
Now that you’ve installed the tools, let’s explore. 
The first thing to note is the new Developer folder at 
the top level of your hard drive. Go ahead and take 
a look. It is at the same level as your Applications 
folder. As you make your way down your 
programming path, you will spend a lot of time in the 
Developer folder.

Unix folks have a very efficient system for describing 
where files live. Files and folders at the top level of 
your hard drive start with a slash character “/”, then 
follow that with the file or folder name. Thus, we 
might refer to /Applications or /Developer. To dive 
deeper, add another slash and another file or folder 
name. For example, inside the Applications folder is 
a Utilities subfolder and, inside that, is an application 
named Terminal. Unix folks would refer to the 
Terminal application using this path:

/Applications/Utilities/Terminal

Get the idea?

The tools package you just installed came with its 
own set of applications. They live inside their own 
Applications folder within the Developer folder. Unix 
folks refer to this folder as /Developer/Applications/. 
We’ll use this Unix path naming convention 
throughout the book. It really works well.

In the Finder, navigate into /Developer/Applications/. 
Inside that folder, you’ll find several subfolders along 

with two applications, Interface Builder and Xcode. 
Interface Builder gives you a powerful set of tools 
you can use to add the Mac OS X look and feel to 
your programs. In this book, we’ll be focusing on the 
basics of programming. All of our programs will run 
in a single scrolling text window. We’ll learn what 
we need to learn to add elements such as windows, 
menus, scrollbars, buttons, checkboxes and the like 
in later volumes in this series. For now, you can 
ignore Interface Builder.

The tool we will be focused on in this book is Xcode.

As you’ll learn throughout the book, Xcode is a 
program that helps you organize and build your own 
programs. If you’ve never programmed before, don’t 
worry about the specifics. At this point, our goal is 
to run Xcode, create a test program, and run the test 
program, just to verify that we have installed Xcode 
properly.

Double-click on the Xcode icon.

Xcode organizes all the files you use to build a 
specific program using something called a project 
file. Depending on your default settings, Xcode may 
prompt you to open an existing project when it 
launches. Since we’ll be creating a new test project 
from scratch, click cancel.

To create a new project, select New Project… from 
the File menu. Xcode will bring up a new window 
asking you to select the project type that you want 
to create. As you can see in Figure 2-7, there are a lot 
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of different project types. You can create projects for 
AppleScript, Java, C++, Objective-C, even projects 
to build your very own screen saver, to name but 
a few. And, of course, you can create a project for 
programming in C.

Figure 2.7 Xcode prompting you to determine what type 
of new project you want to create.

To do this, scroll down past the Application and 
Bundle sections to the section labeled Command 
Line Utility and select the Standard Tool project. 
Notice (Figure 2-7) that Standard Tool is under 
the Tool category. If you can’t find the words 
Standard Tool, try clicking the grey triangle to the 

left of the word Command Line Utility to reveal the 
subcategories below it.

Once you’ve selected Standard Tool, click on the 
Next button on the bottom right to move to the next 
step.

A new pane appears allowing you to give your 
project a name and select its location. In the Project 
Name field, type in the name 02-test (see Figure 2-8). 
The 02 is for chapter 2 and the test is for, well, test.

Next, we’ll fill in the Project Directory field. We could 
edit the text field and type in a Unix path name, but 
easier still, we can click the Choose… button to select 
a folder. Go ahead and click the Choose… button.
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Figure 2.8 Where to save your new project? Click the 
Choose… button to select a destination.

When you click the Choose… button, you will be 
prompted to select a folder in which to store your 
projects. Start by navigating to your Documents 
folder, then click the New Folder button (lower left 
corner) and create a new folder named Projects. 
Once the Projects folder is created, select it and click 
the Choose button.

Now the Project Directory field should look like 
the one shown in Figure 2-9. We’ve asked Xcode 
to create a new C project in a folder name 02-test 
within our newly created Projects folder.

Figure 2.9 We’ll create all our projects in our new 
Projects folder.

Hmmm. What’s that weird character at the beginning 
of the Project Directory field? As it turns out, in the 
Unix world the tilde character stands for your home 
directory, the directory assigned to you when your 
Mac OS X account was created on your machine.

For example, on my machine my login name 
is davemark and my home directory is /Users/
davemark/. So on my machine, the tilde stands 
for /Users/davemark/. On my machine, the path ~/
Documents/Projects/02-test/ is shorthand for /Users/
davemark/Documents/Projects/02-test/.

It’s also worth noting that in Unix, directory names 
are traditionally ended with a slash, while file names 
are not. So Documents/MyDirectory/ should end with 
a slash, while Documents/MyDirectory/myfile should 
not end with a slash.

Make sense?

Now that you’ve specified a project name and 
directory, click the Finish button to create your new 
project.
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Running the Project
When you click the Finish button, Xcode will create 
a project window you’ll use to manage your new 
project. The project window (Figure 2-0) is jam-
packed with all sorts of buttons, controls, and text. 
Don’t worry about all that stuff. Over time, you’ll 
become quite comfortable with everything you see. 
For now, all you need to know is that this project 
window shows you that Xcode is installed properly.

Figure 2.0 Your new project window.

Our test program puts up a window, displays the 
text, Hello, World!, then exits gracefully. We didn’t 
have to do anything special to the project. When 
Xcode creates a new C project, that’s what comes 
right out of the box.

Let’s give it a try.

Select Build and Run from the Build menu. Xcode 
will do a little thinking, a little behind the scenes 
action, and will put up a window displaying the 
following text:

Hello, World!

02-test has exited with status 0.

This is perfect. Exactly what we were looking for.

Notice that instead of showing a picture of the results 
window, we just listed the text that appeared in the 
window. Get used to this. We’ll use this approach 
throughout the rest of this book. Every program 
we write in this book will produce text as its results. 
We’ve set the text in a special font so you can tell it 
apart from the rest of the book text.

 Let’s Move On
Well, that’s about it for this chapter. You’ve 
accomplished a lot. You’ve joined ADC, logged in, 
downloaded all the pieces that make up the Xcode 
installer, reassembled the installer, installed Xcode, 
created a new project, and built and run your very 
first program. Awesome! I’d say that calls for a nice, 
cool beverage of your choice and a well deserved 
round of applause.

Feel free to quit Xcode if you like. We’ll fire it up 
again in the next chapter. See you there!
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efore we dig into C programming specifics, we’ll 
spend a few minutes reviewing the basics of 
programming. We’ll answer such questions as “Why 
write a computer program?” and “How do computer 
programs work?” We’ll look at all of the elements that 
come together to create a computer program, such as 
source code, a compiler, and the computer itself.

If you’ve already done some programming, skim 
through this chapter. If you feel comfortable with the 
material, skip ahead to Chapter 4. Most of the issues 
covered in this chapter will be C-independent.

Programming
Why write a computer program? There are many 
reasons. Some programs are written in direct 
response to a problem too complex to solve by 
hand. For example, you might write a program to 
calculate the constant π to 5,000 decimal places, or 
to determine the precise moment to fire the boosters 
that will safely land the Mars Rover.

Other programs are written as performance aids, 
allowing you to perform a regular task more 
efficiently. You might write a program to help you 
balance your checkbook, keep track of your baseball 
card collection, or lay out this month’s issue of 
Dinosaur Today.

Whatever their purpose, each of these examples 
shares a common theme. They are all examples of the 
art of programming. Your goal in reading this book 
is to learn how to use the C programming language 
to create programs of your own. Before we get into 
C, however, let’s take a minute to look at some other 
ways to solve your programming problems.
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Some Alternatives to C
As mentioned in Chapter , C is one of the most 
popular programming languages around. There’s 
very little you can’t do in C (or in some variant of 
C), once you know how. On the other hand, a C 
program is not necessarily the best solution to every 
programming problem.

For example, suppose you are trying to build a 
database to track your company’s inventory. Rather 
than writing a custom C program to solve your 
problem, you might be able to use an off-the-shelf 
package like FileMaker Pro or, perhaps, a Unix-based 
solution like MySQL or PostgreSQL to construct 
your database. The programmers who created 
these packages solved most of the knotty database 
management problems you’d face if you tried to write 
your program from scratch. The lesson here: Before 
you tackle a programming problem, examine all the 
alternatives. You might find one that will save you 
time, money, or that will prove to be a better solution 
to your problem.

Some problems can be solved using the Mac’s 
built-in scripting language, AppleScript. Just like C, 
AppleScript is a programming language. Typically, 
you’d use AppleScript to control other applications. 
For example, you might create an AppleScript that 
gets your daily calendar from iCal, formats it just the 
way you like it using TextEdit, then prints out the 
results. Or, perhaps, you might write a script that 
launches Safari and opens each of your bookmarked 

news sites, each in a separate window. If you can use 
existing applications to do what you need, chances 
are good you can use AppleScript to get the job done.

Want to mess with AppleScript? Everything you need 
to do just that should already be on your hard drive. 
Look in your Applications folder for an AppleScript 
subfolder. Inside the AppleScript subfolder, you’ll find 
an application named Script Editor. Script Editor lets 
you create and run AppleScript scripts.

To try your hand at scripting, launch TextEdit (it’s in 
the Applications folder) and type a few lines of text 
into the text editing window that appears (see Figure 
3-1). Next, launch Script Editor, type in this script and 
press the Run button:

tell application “TextEdit”

get the fifth word of front 
document

end tell

If all goes well, the fifth word from the TextEdit 
window should appear in the results pane at the 
bottom of the Script Editor window (see Figure 3-2). 
If you are interested in learning more, check out the 
brand new edition of Danny Goodman’s AppleScript 
Handbook, updated for Mac OS X. You’ll find it on the 
http://www.spiderworks.com web site.

http://www.spiderworks.com
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Figure 3. First, I opened TextEdit and typed in a few 
lines of text…

Figure 3.2 Next, I typed this script in to Script Editor and 
clicked the Run button. The result is shown at the bottom 
of the window.

Some applications feature their own proprietary 
scripting language. For instance, Microsoft Excel lets 

you write programs that operate on the cells within 
a spreadsheet. Some word processing programs let 
you write scripts that control just about every word 
processing feature in existence. Though proprietary 
scripting languages can be quite useful, they aren’t 
much help outside their intended environments. 
You wouldn’t find much use for the Excel scripting 
language outside Excel, for example.

What About C++, Java, and C#?
A while back, there was a big debate in the 
programming community as to which programming 
language to learn first. Naturally, the C++ people 
thought that C++ was by far the best language to 
start with. Java and C# people felt the same way 
about Java and C#. But the truth is, each of those 
languages is based on C. And if you learn C first, 
you’ll have a huge leg up on learning any of these 
languages. And when the next C-based languages hit 
the streets (there are several in the works), you’ll have 
a leg up on them, as well.

Learn C first, and all that C knowledge will count 
towards your C++, Java, and C# education.
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The Programming Process
In Chapter 2, you installed the Macintosh developer 
tools and went through the process of creating a 
project,  then building and running the project. Let’s 
take a look at the programming process in a bit more 
detail.

Source Code
No matter their purpose, most computer programs 
start as source code. Your source code will 
consist of a sequence of instructions that tells the 
computer what to do. Source code is written in a 
specific programming language, such as C. Each 
programming language has a specific set of rules that 
defines what is and isn’t “legal” in that language.

Your mission in reading this book is to learn how to 
create useful, efficient, and, best of all, legal C source 
code.

If you were programming using everyday English, 
your source code might look like this:

Hi, Computer!
Do me a favor. Ask me for five numbers, add 
them together, then tell me the sum.

If you wanted to run this program, you’d need a 
programming tool that understood source code 
written in English. Since CodeWarrior doesn’t 
understand English, but does understand C, let’s look 
at a C program that does the same thing:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int index, num, sum;
  
 sum = 0;
  
 for ( index=1; index<=5; index++ )
 {
  printf( “Enter number %d --->”, index );
  scanf( “%d”, &num );
  sum = sum + num;
 }

 printf( “The sum of these numbers is %d.”, 
sum );

 return 0;
}

If this program doesn’t mean anything to you, don’t 
panic. Just keep reading. By the time you finish 
reading this book, you’ll be writing C code like a pro.

Compiling Your Source Code
Once your source code is written, your next job is 
to hand it off to a compiler. The compiler translates 
your C source code into instructions that make sense 
to your computer. These instructions are known as 
machine language or object code. Source code is 
for you, machine language/object code is for your 
computer. You write the source code using an editor, 
then the compiler translates your source code into 
machine readable form.
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Don’t let the terminology bog you down. And that’s 
an order! Read the rest of this chapter, just to get a 
basic idea of the programming process, then move on 
to Chapter 4. I’ll lay everything out for you, step-by-
step, so you won’t get lost.

Xcode collects everything needed to build your 
project into a project file. Figure 3-3 shows a project 
I built to run the source code above. Again, don’t 
worry about all the details. There’s a lot here to 
absorb. For now, think of the project file as a file 
folder filled up with all your important papers. But 
instead of papers, the project file is a collection of 
all the files that come together to make your project 
work.

Figure 3.3 An Xcode project window, showing some source 
code.

Think of the process of running your program as a 
three stage process. First, Xcode compiles all your 
source code into object code. Next, all the object 
code in your project is linked together by a program 
called a linker to form your application. That linked 
application is what actually runs on your computer. 
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int main()
{
    return 0;
}

main.c

int extras()
{
    return 0;
}

extras.c

0100111001010
0101001110100
1010010010010
1100100111010
0101001001001
0110010011101

lib.o

0100111001010
0101001110100
1010010010010
1100100111010
0101001001001
0110010011101

main.o

0100111001010
0101001110100
1010010010010
1100100111010
0101001001001
0110010011101

extras.o

0100111001010
0101001110100
1010010010010
1100100111010
0101001001001
0110010011101

lib.o

compiler

compiler

main.o

extras.o

0100111001010
0101001110100
1010010010010
1100100111010
0101001001001
0110010011101

lib.o

linker

0100111001010
0101001110100
1010010010010
1100100111010
0101001001001
0110010011101

0100111001010
0101001110100
1010010010010
1100100111010
0101001001001
0110010011101

Linked
Application

Figure 3.4 Building your application. First, your source 
code is compiled, then your object code is linked. The 
linked application is ready to run.

Take a look at Figure 3-4. This project contains two 
source code files, one named main.c and another 
named extras.c, as well as an object file named lib.
o. Sometimes, you’ll find yourself making use of 
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some code that someone already compiled. Perhaps 
they want to share their code, but do not want to 
show you their source code. Or, perhaps, you built 
a library of code that you’ll use again and again and 
don’t want to recompile each time you use the code. 
By precompiling the file into object code and adding 
the object code into your project, you can save some 
time.

As you can see in Figure 3-4, Xcode starts by 
compiling main.c and extras.c into object code. Next, 
all three object files are linked together by the linker 
into a runnable application. Once this is done, Xcode 
can run your application for you.

What’s Next
At this point, don’t worry too much about the details. 
The basic concept to remember from this chapter is 
that your C programs will start life as source code, 
then get converted to object code by the compiler. 
Finally, all the object code gets linked together to 
form your runnable application.

Ready to get into some source code? Get out your 
programming gloves - we’re about to go to code!



E
Chapter 4  C Basics: Functions

26

very programming language is designed to follow 
strict rules that define the language’s source code 
structure. The C programming language is no 
different. These next few chapters will explore the 
syntax of C.

Chapter 3 discussed some fundamental 
programming topics, including the process of 
translating source code into machine code through a 
tool called the compiler. This chapter focuses on one 
of the primary building blocks of C programming, 
the function.

C Functions
C programs are made up of functions. A function is 
a chunk of source code that accomplishes a specific 
task. You might write a function that adds together a 
list of numbers, or one that calculates the radius of a 
given circle. Here’s an example:

int SayHello( void )
{
 printf( “Hello!!!\n” );
}

This function, called SayHello(), prints a message 
in a special scrolling text window known as the 
run window. On some systems, this window is also 
known as the console window or just plain console. 
Though technically Xcode treats the run window and 
console as two separate things, we’ll use both terms 
to refer to the output window used by our programs.
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Throughout this book, we’ll refer to a function by 
placing a pair of parentheses after its name. This 
will help distinguish between variable names and 
function names. For example, the name doTask 
refers to a variable (variables are covered in Chapter 
5), while doTask() refers to a function.

The Function Definition
Functions start off with a function specifier, in this 
case:

int SayHello( void )

A function specifier consists of a return type, the 
function name, and a pair of parentheses wrapped 
around a parameter list. We’ll talk about the return 
type and parameter list later. For now, the important 
thing is to be able to recognize a function specifier 
and be able to pick out the function’s name from 
within the specifier.

Following the specifier comes the body of the 
function. The body is always placed between a pair of 
curly braces: “{” and “}”. These braces are known in 
programming circles as “left-curly” and “right-curly”. 
Here’s the body of SayHello():

{
 printf( “Hello!!!\n” );
}

The body of a function consists of a series of one or 
more statements, each followed by a semicolon “;”. 
If you think of a computer program as a detailed set 
of instructions for your computer, a statement is one 
specific instruction. The printf() featured in the 
body of SayHello() is a statement. It instructs 
the computer to display some text in the console 
window.

As you make your way through this book, you’ll learn 
C’s rules for creating efficient, compilable statements.

Creating efficient statements will make your 
programs run faster with less chance of error. The 
more you learn about programming (and the more 
time you spend at your craft) the more efficient you’ll 
make your code.

Syntax Errors and Algorithms
When you ask the compiler to compile your source 
code, the compiler does its best to translate your 
source code into object code. Every so often, the 
compiler will hit a line of source code that it just 
doesn’t understand. When this happens, the compiler 
reports the problem to you. It does not complete 
the compile. The compiler will not let you run your 
program until every line of source code compiles.

As you learn C, you’ll find yourself making two types 
of mistakes. The simplest type, called a syntax error, 
prevents the program from compiling. The syntax 
of a language is the set of rules that determines what 
will and will not be read by the compiler. Many 
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syntax errors are the result of a mistyped letter, or 
typo. Another common syntax error occurs when 
you forget the semicolon at the end of a statement.

Syntax errors are usually fairly easy to fix. If the 
compiler doesn’t tell you exactly what you need to fix, 
it will usually tell you where in your code the syntax 
error occurred and give you enough information to 
spot and repair the error.

The second type of mistake is a flaw in your 
program’s algorithm. An algorithm is the approach 
used to solve a problem. You use algorithms all the 
time. For example, here’s an algorithm for sorting 
your mail:

1) Start by taking the mail out of the mailbox.
2) If there’s no mail, you’re done! Go watch TV.
3) Take a piece of mail out of the pile.
4) If it’s junk mail, throw it away, then go back to 

step 2.
5) If it’s a bill, put it with the other bills, then go 

back to step 2.
6) If it’s not a bill and not junk mail, read it, then go 

back to step 2.

This algorithm completely describes the process of 
sorting through your mail. Notice that the algorithm 
works, even if you didn’t get any mail. Notice also 
that the algorithm always ends up at step 2, with the 
TV on.

Figure 4. shows a pictorial representation of the 
mail-sorting algorithm, commonly known as a flow 
chart. Much as you might use an outline to prepare 
for writing an essay or term paper, you might use a 
flow chart to flesh out a program’s algorithm before 
you actually start writing the program. Here’s how 
this works.

This flow chart uses two types of boxes. The 
rectangular box portrays an action, such as taking 
mail out of the mailbox or recycling the junk mail. 
Once you’ve taken the action, follow the arrow 
leading out of the rectangle to go on to the next step 
in the sequence. 

Each diamond-shaped box poses a yes/no question. 
Unlike their rectangular counterparts, diamond 
shaped boxes have two arrows leading out of them. 
One shows the path to take if the answer to the 
question inside the box is yes, the other shows the 
path to take if the answer is no. Follow the flow chart 
through, comparing it to the algorithm described 
above.

In the C world, a well-designed algorithm results 
in a well-behaved program. On the other hand, a 
poorly designed algorithm can lead to unpredictable 
results. Suppose, for example, you wanted to write a 
program that added three numbers together, printing 
the sum at the end. If you accidentally printed one of 
the numbers instead of the sum of the numbers, your 
program would still compile and run. The result of 
the program would be in error, however (you printed 
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one of the numbers instead of the sum), because of a 
flaw in your program’s algorithm.

The efficiency of your source code, referred to earlier, 
is a direct result of good algorithm design. Keep the 
concept of algorithm in mind as you work your way 
through the examples in the book.

Take Mail
Out of Mailbox

All Done!
Go Watch TV.

Place Bill
on Hall Table

Recycle the
Darn Thing

Read
Mail

Look at a
Piece of Mail

Is It
Junk
Mail?

Is It
a Bill?

Any
Mail
Left?

no no

yesyes

yes no

Figure 4. The mail sorting flow chart.
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Calling a Function
In Chapter 2, you ran a test program to make sure 
Xcode (your programming software) was installed 
properly. The test program sat in a file called main.c, 
and consisted of a single function, called main(). As 
a refresher, here’s the source code from main.c:

#include <stdio.h>

int main (int argc, const char * argv[]) {
    // insert code here...
    printf(“Hello, World!\n”);
    return 0;
}

As you make your way through the code in this book, 
you’ll notice that most of my code follows a slightly 
different style than Xcode’s sample program. I tend 
to put my open curly brace (“{“) on its own line, and 
I tend to sprinkle a few more spaces throughout my 
code. That’s just my personal style. Adopt my style or 
develop one of your own. Find a style that works for 
you and be consistent!

At first blush, even this starter program can seem 
intimidating, but no worries, mate. There’s really only 
one line in this code that you really need to focus on 
at this point in the book, and that’s this function call:

    printf(“Hello, World!\n”);

Though this program has lots of complicated looking 
elements all around, at its heart is a single function 
call. As far as all the other dangly bits, you can read 
the tech block that follows for a sneak preview, or 
just ignore them and know that we’ll get to them as 
we go along.
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The source code above can be broken into five basic 
pieces. Here’s the first piece:

#include <stdio.h>  

In C, any line that starts off with a pound sign (“#”) 
is known as a compiler directive, an instruction 
that asks the compiler to do something special. 
This particular directive is called a #include 
(pronounced “pound include”). It asks the compiler to 
include code from another file on your hard drive as 
if that code was in this file in the first place. As it turns 
out, the file stdio.h contains all kids of goodies 
that we’ll use throughout the book. Just ignore this 
line for now.

Here’s the second piece:

int main (int argc, const char * 
argv[]) {

}

As we discussed a bit earlier, this is the function 
specifier for the function named main(). The 
curly-braces (“{” and “}”) surround the body of the 
function.

The third piece of this puzzle is this line:

// insert code here...

Any time the compiler encounters two slashes (“//”) 
in a row, it ignores the slashes and anything else on 
that line. This line of code is called a comment. Its only 
purpose is to document your code and to help make 
clear what’s going on at this point in the program. 
Comments are a good thing.

The fourth piece is the call to the function printf(), 
which we’ll focus on in a bit:

printf(“Hello, World!\n”);

The fifth and final piece of our program is this line of 
code:

return 0;

A return statement in a function tells the compiler 
that you are done with this function and you want to 
return. In this case, you want the function to return a 
value of 0.

Again, don’t get hung up on the specifics. It’ll all 
become clear as you go.

So what does “calling a function” really mean? 
Basically, whenever your source code calls a function, 
each of the statements in the called function is 
executed before the next statement of the calling 
function is executed.

Confused? Look at Figure 4.2. In this example, 
main() starts with a call to the function 
MyFunction(). This call to MyFunction() 
will cause each of the statements inside 
MyFunction() to be executed. Once the last 
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statement in MyFunction() is executed, control 
is returned to main(). Now, main() can call 
AnotherFunction().

main()
{
 MyFunction();
 AnotherFunction();
}

MyFunction()
{
 
}

AnotherFunction()
{
 
}

Figure 4.2 main() calls MyFunction(), then calls 
AnotherFunction().

Every C program you write will have a main() 
function. Your program will start running with the 
first line in main() and, unless something unusual 
happens, end with the last line in main(). Along the 
way main() may call other functions which may, in 
turn, call other functions and so on.

ISO C and the Standard Library
The American National Standards Institute 
(ANSI) established a national standard for the C 
programming language. This standard became 
known as ANSI C. Later, the International Standards 
Organization (ISO) adopted this standard, and ANSI 
C evolved into the international standard known as 
ISO C. Part of this standard is a specific definition of 
the syntax of the C language.

Occasionally, you’ll still hear C programmers refer to 
the ANSI C standard. The main difference between 
the two standards is that ISO C has extra functions 
in its Standard Library to handle multibyte and wide 
characters. ISO C, ANSI C, either term is fine. The 
important thing is to be aware that a strict C standard 
does exist.

As we stated earlier, the syntax of a language gives 
programmers a set of rules that rigidly defines the 
format of their source code. For example, ISO C tells 
you when you can and can’t use a semicolon. ISO C 
tells you to use a pair of curly braces to surround the 
body of each function. You get the idea. The greatest 
benefit to having an international standard for C is 
portability. With a minimum of tinkering, you can 
get an ISO C program written on one computer up 
and running on another computer. When you finish 
with this book, you’ll be able to program in C on any 
computer that has an ISO C compiler.

Another part of the ISO C standard is the Standard 
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Library. The Standard Library is a set of functions 
available to every ISO C programmer. As you may 
have guessed, the printf() function you’ve seen 
in our sample source code is part of the Standard 
Library.

There are tons of great functions in the Standard 
Library. You’ll learn some of the more popular ones 
as we make our way through the book. Once you 
get comfortable with the Standard Library functions 
presented here, dig through some of the Standard 
Library documentation that you’ll find on the web, 
just to get a sense of what else is in there.

There are a number of great sites that discuss the 
Standard Library. One of my favorite resources on the 
net is Wikipedia (http://www.wikipedia.org), an 
open-content, collaborative encyclopedia. If you’ve 
never played with Wikipedia, here’s an excellent link 
to get you started:

http://en.wikipedia.org/wiki/ANSI_C_
standard_library

Yeah, it’s a bit techie, but an invaluable reference 
resource once you start developing your own code, or 
if you encounter a function in this book and want to 
know more.

Another great page (also referenced at the bottom of 
the Wikipedia page) is the detailed C Standard Library 
reference maintained by our friends at the University 
of Tasmania:

http://www.infosys.utas.edu.au/info/
documentation/C/CStdLib.html

Enjoy!

http://www.wikipedia.org
http://en.wikipedia.org/wiki/ANSI_C_standard_library
http://en.wikipedia.org/wiki/ANSI_C_standard_library
http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html
http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html
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Same Program, Two Functions
As you start writing your own programs, you’ll 
find yourself designing many individual functions. 
You might need a function that puts a form up on 
the screen for the user to fill out. You might need 
a function that takes a list of numbers as input, 
providing the average of those numbers in return. 
Whatever your needs, you will definitely be creating 
a lot of functions. Let’s see how it’s done.

Our first program contained a function named 
main() that passed the text string “Hello, 
world!\n” to printf(). Our next program, 
hello2, captures that functionality in a new 
function, called SayHello().

You’ve probably been wondering why the characters 
“\n” keep appearing at the end of all our text strings. 
Don’t worry, there’s nothing wrong with your copy 
of the book. The “\n” is perfectly normal. It tells 
printf() to move the cursor to the beginning of 
the next line in the text window, sort of like hitting 
the return key in a text editor.

The sequence “\n” is frequently referred to as 
a newline character, a carriage return, or just 
plain return. By including a return at the end of a 
printf(), we know that the next line we print will 
appear at the beginning of the next line in the text 
window.

Opening hello2.xcode
In the Finder, open the Learn C Projects folder, 
open the subfolder named 04.01 - hello2 and 
double-click on the project file hello2.xcode. A 
project window with the title hello2 will appear, as 
shown in Figure 4.3.

Figure 4.3 The hello2 project window.

Notice the left column, labeled Groups & Files. This 
is also known as the Groups & Files pane or the smart 
groups pane, a pane being a sub-area of a window. 
In Figure 4.3, the Implementation Files group is 
selected, and the main area of the project window 
lists the files in this group. In this case, main.c is 
the only source code file in this project. Later in the 
book, we’ll see projects with multiple source code 
files. They’ll all be listed in the Implementation Files 
group.
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If you double-click on the name main.c in the main 
area, a new source code editing window will appear, 
allowing you to edit your source code. Alternatively, 
you can edit your source code right inside your 
project window by clicking on the Show/Hide Editor 
icon in the row of icons at the top of the project 
window. The icon is just to the right of the stop sign 
icon and looks like a miniature version of the project 
window. When you first click the editor, a source 
code editing pane appears in the project window (see 
Figure 4.4).

Figure 4.4 Click on the Show/Hide Editor icon at the top 
of the window to open a source code editing pane in the 
project window.

Here’s the source code from main.c:

#include <stdio.h>

void SayHello( void );

int main (int argc, const char * argv[])
{
 SayHello();
 

return 0;
}

void SayHello( void )
{
 printf( “Hello, world!\n” );
}

Let’s walk through this, line-by-line. hello2 starts 
off with this line of source code:

#include <stdio.h>

You’ll find this line (or a slight variation) at the 
beginning of each one of the programs in this book. 
It tells the compiler to include the source code 
from the file stdio.h as it compiles main.c. stdio.h 
contains information we’ll need if we are going to 
call printf() in this source code file. You’ll see the 
#include mechanism used throughout this book. 
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We’ll talk about it in detail later in the book. For now, 
get used to seeing this line of code at the top of each 
of our source code files.

The line following the #include is blank. This is 
completely cool. Since the C compiler ignores all 
blank lines, you can use them to make your code a 
little more readable. I like to leave a few blank lines 
(at least) between each of my functions.

This line of code appears next:

void SayHello( void );

While this line might look like a function specifier, 
don’t be fooled! If this were a function specifier, it 
would not end with a semi-colon and it would be 
followed by a left-curly-brace (“{“) and the rest of the 
function. This line is known as a function prototype 
or function declaration. You’ll include a function 
prototype for every function, other than main(), in 
your source code file.

To understand why, it helps to know that a compiler 
reads your source code file from the beginning to 
the end, a line at a time. By placing a complete list 
of function prototypes at the beginning of the file, 
you give the compiler a preview of the functions it is 
about to compile. The compiler uses this information 
to make sure that calls to these functions are made 
correctly.

This will make a lot more sense to you once we get 
into the subject of parameters later on. For now, get 
used to seeing function prototypes at the beginning 
of all your source code files.

Next comes the function main(). main() first 
calls the function SayHello():

int main (int argc, const char * argv[])
{
 SayHello();

At this point, the lines of the function SayHello() 
get run. When SayHello() is finished, main() 
can move on to its next line of code. The keyword 
return tells the compiler to return from the current 
function, without executing the remainder of the 
function. We’ll talk about return later on. Until 
then, the only place you’ll see this line is at the end of 
main().

return 0;
}

Following main() is another pair of blank 
lines, followed by the function SayHello(). 
SayHello() prints the string “Hello, world!”, 
followed by a return, in a window, then returns 
control to main().



37

Chapter 4:  
C Basics:
Functions

void SayHello( void )
{
 printf( “Hello, world!\n” );
}

Let’s step back for a second and compare our first 
program to hello2. In our first program, main() 
called printf() directly. In hello2, main() 
calls a function which then calls printf(). This 
extra layer demonstrates a basic C programming 
technique, taking code from one function and using 
it to create a new function. This example took this 
line of code:

printf( “Hello, world!\n” );

and used it to create a new function called 
SayHello(). This function is now available for use 
by the rest of the program. Every time we call the 
function SayHello(), it’s as if we executed the line 
of code:

printf( “Hello, world!\n” );

SayHello() may be a simple function, but it 
demonstrates an important concept. Wrapping a 
chunk of code in a single function is a powerful 
technique. Suppose you create an extremely complex 

function, say, 00 lines of code in length. Now, 
suppose you call this function in five different places 
in your program. With 00 lines of code, plus the five 
function calls, you are essentially achieving 500 lines’ 
worth of functionality. That’s a pretty good return on 
your investment!

Let’s watch hello2 in action.

Running hello2
Select Build and Run from the Project menu. You’ll 
see a window similar to the one shown in Figure 4.5. 
Gee, this looks just like the output from Chapter 2’s 
test program. Of course, that was the point. Even 
though we embedded our printf() inside the 
function SayHello(), hello2 produced the same 
results.

Figure 4.5 The output from hello2.
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Before we move on to our next program, let’s 
revisit a little terminology we first touched on at 
the beginning of the chapter. The window that 
appeared when we ran hello2 is referred to as 
the run window and, less formally, as the console 
window or just plain console. There are a number 
of Standard Library functions designed to send text 
to the console window. The text that appears in the 
console window is known as output. After you run 
a program, you’re likely to check the output that 
appears in the console to make sure your program 
ran correctly.

Text based programming is fine and good, but 
eventually, you’ll want to expand your horizons and 
learn how to add graphical elements like buttons, 
scrollbars, windows, and menus to your programs. 
Have patience, stick with the program, and you’ll get 
there. Start with Learn C. Once you feel comfortable 
with C, move on to Mark Dalrymple’s excellent Learn 
Objective C, which will teach you how to add object 
programming to your C code. Once you have a handle 
on Objective C, you’ll be ready to add Cocoa to the 
mix. Learn C to learn the basics of programming, add 
objects to the mix with Objective C, then bring the 
Mac-specific user interface widgets to life with Cocoa.

Again, have patience, stick with the program, and 
be sure to send me pictures of you, on the beach in 
Hawaii, celebrating the release of your brand new, 
best selling application!

Another Example
Imagine what would happen if you changed 
hello2’s version of main() so that it read:

int main (int argc, const char * argv[])
{
 SayHello();
 SayHello();
 SayHello();
 
 return 0;
}

What’s different? In this version, we’ve added two 
more calls to SayHello(). Can you picture what 
the console will look like after we run this new 
version?

To find out, close the hello2 project window, 
then select Open… from Xcode’s File menu. Note 
that as soon as you close the project window, Xcode 
will close all the other project-related windows 
automatically.

When Xcode prompts you to open a project, 
navigate into the Learn C Projects folder, then into 
the 04.02 – hello3 subdirectory and open the hello3.
xcode project file.

When you run hello3, the run window shown 
in Figure 4.6 will appear. Take a look at the 
output. Does it make sense to you? Each call to 
SayHello() generates the text “Hello, world!” 
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followed by a carriage return.

Figure 4.6 The output from hello3.

Generating Some Errors
Before we move on to the next chapter, let’s see 
how the compiler responds to errors in our source 
code. In the hello3 project window, use your 
favorite method to edit the main.c source code file. 
Remember, you can click the Show Editor icon to edit 
the source file in the project window itself, or you 
can locate main.c in the Implementation Files group 
and double-click the name to open a new main.c 
editing window. Either method is fine.

In the source code window, find the line of source 
code containing the function specifier for main(). 
The line should read:

int main (int argc, const char * argv[])

Click at the end of the line, so the blinking cursor 
appears at the right end of the line. Now type a 
semicolon, so that the line now reads: 

int main (int argc, const char * argv[]);

Here’s the entire file, showing the tiny change you 
just made:

#include <stdio.h>

void SayHello( void );
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int main (int argc, const char * argv[]);
{
 SayHello();
 SayHello();
 SayHello();
 
 return 0;
}

void SayHello( void )
{
 printf( “Hello, world!\n” );
}

Keep in mind that you only added a single semi-
colon to the source code and select Build and Run 
from the Build menu. Xcode knows that you changed 
your source code since the last time it was compiled 
and it will try to recompile main.c. Figure 4.7 shows 
the error window that appears, telling you that you’ve 
got a problem with your source code. Yikes! All that, 
just because you added a measly semicolon!

Sometimes, the compiler will give you a perfectly 
precise message that exactly describes the error it 
encountered. In this case, however, the compiler got 
so confused by the extra semicolon, it reported 6 
errors instead of just one. Notice, however, that the 
very first error message gives you a pretty good idea 
of what is going on. It complains about a parse error 
before the “{” token. The compiler is reading your 
source code, making its way down main.c, when 
it encounters what it thinks is a function specifier. 

But then, just when it expects an open curly brace, 
it finds a semicolon. Hrm. That’s not right. Better 
report an error.

In the build window, if you double-click on the 
first error line (the line that says “error: parse error 
before { token”), Xcode will take you to the offending 
line in the main.c editing window. In general, 
when you encounter an error compiling your code, 
you’ll double-click on the error message, figure 
out what’s wrong, fix it, then move on to the next 
error. Sometimes, I fix one error and immediately 
recompile, just on the off-chance that this one error 
actually was the cause of all the other error message, 
as is the case with our errant semicolon.

Figure 4.7 What? All these errors just from adding a 
simple semicolon? Yup.

Go back to your main.c editing window, delete the 
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extra semicolon, then select Build and Run from the 
Build menu. Xcode will recompile your code and 
rerun the program, proving that you have indeed 
fixed the error. Good.

C is Case Sensitive
There are many different types of errors possible in 
C programming. One of the most common results 
from the fact that C is a case-sensitive language. In 
a case-sensitive language, there is a big difference 
between lower- and upper-case letters. This means 
you can’t refer to printf() as Printf() or even 
PRINTF(). Figure 4.8 shows the warning message 
you’ll get if you change your call of printf() to 
PRINTF(). Basically, this message is telling you that 
Xcode couldn’t find a function named PRINTF() 
and will do its best to run the program anyway, 
assuming it will find the appropriate function at run-
time (when the program runs). To fix this problem, 
just change PRINTF() back to printf() and 
recompile.
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Figure 4.8 The warning message you get when you change 
printf() to PRINTF().

What’s Next?
Congratulations! You’ve made it through basic 
training. You know how to open a project, how to 
compile your code, and even how to create an error 
message or two. You’ve learned about the most 
important function: main(). You’ve also learned 
about printf() and the Standard Library.

Now you’re ready to dig into the stuff that gives a C 
program life: variables and operators.
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Exercises

Open the project hello2.xcode, edit hello2.c as 
described in each exercise, and describe the error 
that results:

) Change the line:

 SayHello();

to say:

 SayHello(;

2) Change things back. Now change the line:

int main (int argc, const char * argv[])

to say:

int MAIN (int argc, const char * argv[])

3) Change things back. Now delete the “{” after the 
line:

int main (int argc, const char * argv[])

4) Change things back. Now delete the semicolon at 
the end of this line:

 printf( “Hello, world!\n” );

so it reads:

 printf( “Hello, world!\n” )
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t this point, you should feel pretty comfortable using 
Xcode. You should know how to open a project 
and how to edit a project’s source code. You should 
also feel comfortable running a project and (heaven 
forbid) fixing any syntax errors that may have 
occurred along the way.

On the programming side, you should recognize 
a function when you see one. When you think of 
a function you should first think of main(), the 
most important function. You should remember that 
functions are made up of statements, each of which 
is followed by a semicolon.

With these things in mind, we’re ready to explore 
the foundation of C programming: variables and 
operators. Variables and operators are the building 
blocks you’ll use to construct your program’s 
statements.

An Introduction to Variables
A large part of the programming process involves 
working with data. You might need to add together 
a column of numbers or sort a list of names 
alphabetically. The tricky part of this process is 
representing your data in a program. This is where 
variables come in.

Variables can be thought of as containers for your 
program’s data. Imagine a table with three containers 
sitting on it. Each container is labeled. One container 
is labeled cup1, one labeled cup2, and the third 
cup3. Now imagine you have three pieces of paper. 
Write a number on each piece of paper and place one 
piece inside each of the three containers. Figure 5. 
shows a picture of what this might look like.
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2 3 6
cup1 cup2 cup3

Figure 5.  Three cups, each with its own value.

Now imagine asking a friend to reach into the three 
cups, pull out the number in each one, and add 
the three values together. You can ask your friend 
to place the sum of the three values in a fourth 
container created just for this purpose. The fourth 
container is labeled sum and can be seen in Figure 
5.2.

sum

Figure 5.2  A fourth container, containing the sum of the 
other three containers.

This is exactly how variables work. Variables are 
containers for your program’s data. You create a 
variable and place a value in it. You then ask the 
computer to do something with the value in your 
variable. You can ask the computer to add three 

variables together, placing the result in a fourth 
variable. You can even ask the computer to take the 
value in a variable, multiply it by 2, and place the 
result back into the original variable.

Getting back to our example, now imagine that you 
changed the values in cup1, cup2, and cup3. Once 
again, you could call on your friend to add the three 
values, updating the value in the container sum. 
You’ve reused the same variables, using the same 
formula, to achieve a different result. Here’s the C 
version of this formula:

sum = cup1 + cup2 + cup3;

Every time you execute this line of source code, you 
place the sum of the variables cup1, cup2, and 
cup3 into the variable named sum. At this point, 
it’s not important to understand exactly how this 
line of C source code works. What is important is 
to understand the basic idea behind variables. Each 
variable in your program is like a container with a 
value in it. This chapter will teach you how to create 
your own variables and how to place a value in a 
variable.

Working With Variables
Variables come in a variety of flavors, called types. A 
variable’s type determines the type of data that can 
be stored in that variable. You determine a variable’s 
type when you create the variable. (We’ll discuss 
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creating variables in just a second.) Some variable 
types are useful for working with numbers. Other 
variable types are designed to work with text. In this 
chapter, we’ll work strictly with variables of one type, 
a numerical type called int (eventually, we’ll get into 
other variable types). A variable of type int can hold 
a numerical value, such as 27 or -589.

Working with variables is a two-stage process. First 
you create a variable, then you use the variable. In 
C, you create a variable by declaring it. Declaring 
a variable tells the compiler, “Create a variable for 
me. I need a container to place a piece of data in.” 
When you declare a variable, you have to specify 
the variable’s type as well as its name. In our earlier 
example, we created four containers. Each container 
had a label. In the C world, this would be the same as 
creating four variables with the names cup1, cup2, 
cup3, and sum. In C, if we want to use the value 
stored in a variable, we use the variable’s name. We’ll 
show you how to do this later in the chapter.

Here’s an example of a variable declaration:

int myVariable;

This declaration tells the compiler to create a variable 
of type int (remember, ints are useful for working 
with numbers) with the name myVariable. The 
type of the variable (in this case, int) is extremely 
important. As you’ll see, variable type determines the 

type and range of values a variable can be assigned.

Variable Names
Here are a few rules to follow when you create your 
own variable names:

4 Variable names must always start with an upper or 
lower-case letter (A, B, ..., Z or a, b, ..., z) or with an 
underscore (“_”).

4 The remainder of the variable name must be 
made up of upper or lower-case letters, numbers 
(0, , ..., 9), or the underscore.

These two rules yield variable names like 
myVariable, THIS_NUMBER, VaRiAbLe_1, and 
A1234_4321. Note that a C variable may never 
include a space, or a character like “&” or “*”. These 
two rules must be followed.

On the other hand, these rules do leave a fair amount 
of room for inventiveness. Over the years, different 
groups of programmers came up with additional 
guidelines (also known as conventions) that made 
variable names more consistent and a bit easier to 
read.

As an example of this, Unix programmers tended 
to use all lower case letters in their variable names. 
When a variable name consisted of more than one 
word, the words were separated by an underscore. 
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This yielded variable names like my_variable or 
number_of_puppies.

Another popular convention stems from a 
programming language named SmallTalk. Instead 
of limiting all variable names to lower case and 
separating words with an underscore (“_”), 
SmallTalk used a convention known as InterCap, 
where all the words in a variable or function name 
are stuck together. Rather than include a special, 
separating character, each new word added to the 
first word starts with a capital letter. For example, 
instead of number_of_puppies, you’d use 
numberOfPuppies. Instead of my_variable, 
you’d use myVariable. Function names follow the 
same convention, but start with a capital letter, giving 
us function names such as SmellTheFlowers() 
or HowMuchChangeYouGot().

Which convention should you use? For now, we’ll 
follow the InterCap SmallTalk convention described 
in the previous paragraph. But as you make your way 
through the programming universe, you’ll encounter 
different naming conventions that vary with each 
programming environment you encounter.

As mentioned in Chapter 4, C is a case-sensitive 
language. The compiler will cough out an error if you 
sometimes refer to myVariable and other times 
refer to myvariable. Adopt a variable naming 
convention and stick with it - Be consistent!

The Size of a Type
When you declare a variable, the compiler reserves 
a section of memory for the exclusive use of that 
variable. When you assign a value to a variable, 
you are actually modifying the variable’s dedicated 
memory to reflect that value. The number of 
bytes assigned to a variable is determined by the 
variable’s type. You should check your compiler’s 
documentation to see how many bytes go along with 
each of the standard C types.

Some Macintosh compilers assign 2 bytes to each 
int. Others assign 4 bytes to each int. By default, 
Xcode uses 4 byte ints.

It’s important to understand that the size of a type 
can change, depending on factors such as your 
computer’s processor type, operating system (Mac OS 
X vs. Windows, for example), and your development 
environment. Remember, read the documentation 
that comes with your compiler.

Let’s continue with the assumption that Xcode is 
using 4 byte ints. The variable declaration:

int myInt;

reserves memory (in our case, 4 bytes) for the 
exclusive use of the variable myInt. If you later 
assign a value to myInt, that value is stored in the 
4 bytes allocated for myInt. If you ever refer to 
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myInt’s value, you’ll be referring to the value stored 
in myInt’s 4 bytes. 

If your compiler used 2 byte ints, the preceding 
declaration would allocate 2 bytes of memory for the 
exclusive use of myInt. As you’ll see, it is important 
to know the size of the types you are dealing with.

Why is the size of a type important? The size of a 
type determines the range of values that type can 
handle. As you might expect, a type that’s 4 bytes 
in size can hold a wider range of values than a type 
that’s only  byte in size. Here’s how all this works...

Bytes and Bits
Each byte of computer memory is made up of 8 bits. 
Each bit has a value of either  or 0. Figure 5.3 shows 
a byte holding the value 0000. The value 0000 
is said to be the binary representation of the value of 
the byte. Look closer at Figure 5.3. Notice that each 
bit is numbered (the bit numbers are above each bit 
in the figure), with bit 0 on the extreme right side 
to bit 7 on the extreme left. This is a standard bit-
numbering scheme used in most computers.

0
Bit 7

Add 128

0
Bit 6

Add 64

1
Bit 5

Add 32

0
Bit 4

Add 16

1
Bit 3

Add 8

0
Bit 2

Add 4

1
Bit 1

Add 2

1
Bit 0

Add 1

Figure 5.3 A byte holding the binary value 0000.

Notice also the labels that appear beneath each bit 
in the figure (“Add ”, “Add 2”, etc.). These labels are 
the key to binary numbers. Memorize them. (It’s 
easy — each bit is worth twice the value of its right 
neighbor.) These labels are used to calculate the value 
of the entire byte. Here’s how it works:

4 Start with a value of 0.
4 For each bit with a value of , add the label value 

below the bit.

That’s all there is to it! In the byte pictured in Figure 
5.3, you’d calculate the byte’s value by adding  + 2 
+ 8 + 32 = 43. Where did we get the , 2, 8, and 32? 
They’re the bottom labels of the only bits with a value 
of . Try another one.

0
Bit 7

Add 128

1
Bit 6

Add 64

0
Bit 5

Add 32

1
Bit 4

Add 16

1
Bit 3

Add 8

0
Bit 2

Add 4

1
Bit 1

Add 2

0
Bit 0

Add 1

Figure 5.4  What’s the value of this byte?

What’s the value of the byte pictured in Figure 5.4? 
Easy, right? 2 + 8 + 6 + 64 = 90. Right! How about 
the byte in Figure 5.5?
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1
Bit 7

Add 128

1
Bit 6

Add 64

1
Bit 5

Add 32

1
Bit 4

Add 16

1
Bit 3

Add 8

1
Bit 2

Add 4

1
Bit 1

Add 2

1
Bit 0

Add 1

Figure 5.5  Last one: What’s the value of this byte?

This is an interesting one:  + 2 + 4 + 8 + 6 + 32 + 64 
+ 28 = 255. This example demonstrates the largest 
value that can fit in a single byte. Why? Because 
every bit is turned on. We’ve added everything we 
can add to the value of the byte.

The smallest value a byte can have is 0 (00000000). 
Since a byte can range in value from 0 to 255, a byte 
can have 256 possible values.

Actually, this is just one of several ways to represent 
a number using binary. This approach is fine if you 
want to represent integers that are always greater 
than or equal to 0 (known as unsigned integers). 
Computers use a different technique, known as two’s 
complement notation, when they want to represent 
integers that might be either negative or positive.

To represent a negative number using two’s 
complement notation:

4 Start with the binary representation of the 
positive version of the number

4 Complement all the bits (turn the 1s into 0s and 
the 0s into 1s)

4 Add 1 to the result.

For example, the binary notation for the number 9 
is 00001001. To represent -9 in two’s complement 
notation, flip the bits (11110110) then add 1. The two’s 
complement for -9 is 11110110 + 1 = 11110111.

The binary notation for the number 2 is 00000010. 
The two’s complement for -2 would be 11111101 + 1 
= 11111110. Notice that in binary addition, when you 
add 01 + 01 you get 10. Just as in regular addition, you 
carry the 1 to the next column.

Don’t worry about the details of binary 
representation and arithmetic. What’s important to 
remember is that the computer uses one notation 
for positive-only numbers and a different notation 
for numbers that can be positive or negative. Both 
notations allow a byte to take on one of 256 different 
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values. The positives-only scheme allows values 
ranging from 0 to 255. The two’s complement scheme 
allows a byte to take on values ranging from -28 to 
27. Note that both of these ranges contain exactly 
256 values.

Going From 1 to 2 Bytes
So far, we’ve discovered that  byte (8 bits) of 
memory can hold one of 28 = 256 possible values. 
By extension, 2 bytes (6 bits) of memory can hold 
one of 26 = 65,536 possible values. If the 2 bytes are 
unsigned (never allowed to hold a negative value) 
they can hold values ranging from 0 to 65,535. If the 
2 bytes are signed (allowed to hold both positive and 
negative values) they can hold values ranging from 
-32,768 to 32,767.

A 4 byte int can hold 232 = 4,294,967,296 possible 
values. Wow! An unsigned 4 byte int can hold 
values ranging from –2,47,483,648 to 2,47,483,647, 
while a signed 4 byte int can hold values from 0 to 
4,294,967,295.

To declare a variable as unsigned, precede its 
declaration with the unsigned qualifier. Here’s an 
example:

unsigned int      myInt;

Now that you’ve defined the type of variable your 
program will use (in this case, int), you can assign a 
value to your variable.

Operators
One way to assign a value to a variable is with the = 
operator, also known as the assignment operator. An 
operator is a special character (or set of characters) 
that represents a specific computer operation. The 
assignment operator tells the computer to compute 
the value of the right side of the = and assign that 
value to the left side of the =. Take a look at this line 
of source code:

myInt = 237;

This statement causes the value 237 to be placed in 
the memory allocated for myInt. In this line of code, 
myInt is known as an l-value (stands for left-value), 
because it appears on the left side of the = operator. 
A variable makes a fine l-value. A number (like 237) 
makes a terrible l-value. Why? Because values are 
copied from the right side to the left side of the = 
operator. In this line of code:

237 = myInt;

you are asking the compiler to copy the value in 
myInt to the number 237. Since you can’t change 
the value of a number, the compiler will report an 
error when it encounters this line of code (most 
likely, the error message will say something about an 
“invalid lvalue” – go ahead, try this yourself ).
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As we just illustrated, you can use numerical 
constants (such as 237) directly in your code. In 
the programming world, these constants are called 
literals. Just as there are different types of variables, 
there are also different types of literals. You’ll see 
more on this topic later in the book.

Look at this example:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int myInt, anotherInt;

 myInt = 503;
 anotherInt = myInt;

 return 0;
}

Notice we’ve declared two variables in this program. 
One way to declare multiple variables is the way we 
did here, separating the variables by a comma (“,”). 
There’s no limit to the number of variables you can 
declare using this method.

We could have declared these variables using two 
separate declaration lines:

int myInt;
int anotherInt;

Either way is fine. As you’ll see, C is an extremely 
flexible language. Let’s look at some other operators.

The +, -, ++, and -- Operators
The + and - operators each take two values and 
reduce them to a single value. For example, the 
statement:

myInt = 5 + 3;

will first resolve the right side of the = by adding 
the numbers 5 and 3 together. Once that’s done, the 
resulting value (8) is assigned to the variable on the 
left side of the =. This statement assigns the value 8 
to the variable myInt. Assigning a value to a variable 
means copying the value into the memory allocated 
to that variable.

Here’s another example:

myInt = 10;
anotherInt = 12 - myInt;

The first statement assigns the value 0 to myInt. 
The second statement subtracts 0 from 2 to get 2, 
then assigns the value 2 to anotherInt.

The ++ and -- operators operate on a single value 
only. ++ increments (raises) the value by  and -- 
decrements (lowers) the value by . Take a look:
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myInt = 10;
myInt++;

The first statement assigns myInt a value of 0. The 
second statement changes myInt’s value from 0 to 
. Here’s a -- example:

myInt = 10;
--myInt;

This time the second line of code left myInt with 
a value of 9. You may have noticed that the first 
example showed the ++ following myInt, while the 
second example showed the -- preceding myInt.

The position of the ++ and -- operators determines 
when their operation is performed in relation to 
the rest of the statement. Placing the operator on 
the right side of a variable or expression (postfix 
notation) tells the compiler to resolve all values 
before performing the increment (or decrement) 
operation. Placing the operator on the left side of 
the variable (prefix notation) tells the compiler 
to increment (or decrement) first, then continue 
evaluation. Confused? The following examples 
should make this point clear:

myInt = 10;
anotherInt = myInt--;

The first statement assigns myInt a value of 0. In 
the second statement, the -- operator is on myInt’s 
right side. This use of postfix notation tells the 
compiler to assign myInt’s value to anotherInt 
before decrementing myInt. This example leaves 
myInt with a value of 9 and anotherInt with a 
value of 0.

Here’s the same example, written using prefix 
notation:

myInt = 10;
anotherInt = --myInt;

This time, the -- is on the left side of myInt. In 
this case, the value of myInt is decremented before 
being assigned to anotherInt. The result? myInt 
and anotherInt are both left with a value of 9.

This use of prefix and postfix notation shows both 
a strength and a weakness of the C language. On 
the plus side, C allows you to accomplish a lot in a 
small amount of code. In the previous examples, 
we changed the value of two different variables in a 
single statement. C is powerful.

On the down side, C code written in this fashion can 
be extremely cryptic, difficult to read for even the 
most seasoned C programmer.

Write your code carefully.
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The += and -= Operators
In C, you can place the same variable on both the 
left and right sides of an assignment statement. For 
example, the statement:

myInt = myInt + 10;

increases the value of myInt by 0. The same results 
can be achieved using the += operator:

myInt += 10;

is the same as:

myInt = myInt + 10;

In the same way, the -= operator can be used to 
decrement the value of a variable. The statement:

myInt -= 10;

decrements the value of myInt by 0.

The *, /, *=, and /= Operators
The * and / operators each take two values and 
reduce them to a single value, much the same as the 
+ and - operators do. The statement:

myInt = 3 * 5;

multiplies 3 and 5, leaving myInt with a value of 5. 
The statement:

myInt = 5 / 2;

divides 5 by 2 and, assuming myInt is declared as 
an int (or any other type designed to hold whole 
numbers), assigns the integral (truncated) result 
to myInt. The number 5 divided by 2 is 2.5. Since 
myInt can only hold whole numbers, the value 2.5 is 
truncated and the value 2 is assigned to myInt.

Math alert! Numbers like -37, 0, and 22 are known as 
whole numbers or integers. Numbers like 3.14159, 
2.5, and .0001 are known as fractional or floating 
point numbers. 

The *= and /= operators work much the same as 
their += and -= counterparts. The statement:

myInt *= 10;

is identical to the statement:

myInt = myInt * 10;
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The statement:

myInt /= 10;

is identical to the statement:

myInt = myInt / 10;

The / operator doesn’t perform its truncation 
automatically. The accuracy of the result is limited by 
the data type of the operands. As an example, if the 
division is performed using ints, the result will be an 
int, and is truncated to an integer value.

There are several data types (such as float) which 
support floating point division using the / operator.

Using Parentheses ()
Sometimes the expressions you create can be 
evaluated in several ways. Here’s an example:

myInt = 5 + 3 * 2;

You can add 5 + 3, then multiply the result by 2 
(giving you 6). Alternatively, you can multiply 3 * 
2 and add 5 to the result (giving you ). Which is 
correct?

C has a set of built-in rules for resolving the order of 
operators. As it turns out, the * operator has a higher 
precedence than the + operator, so the multiplication 
will be performed first, yielding a result of .

Though it helps to understand the relative 
precedence of the C operators, it is hard to keep 
track of them all. That’s why the C gods gave us 
parentheses! Use parentheses in pairs to define the 
order in which you want your operators performed. 
The statement:

myInt = ( 5 + 3 ) * 2;

will leave myInt with a value of 6. The statement:

myInt = 5 + ( 3 * 2 );
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will leave myInt with a value of . You can use more 
than one set of parentheses in a statement, as long as 
they occur in pairs — one left parenthesis associated 
with each right parenthesis. The statement:

myInt = ( ( 5 + 3 ) * 2 );

will leave myInt with a value of 6.

Operator Precedence
In the previous section I referred to C’s built in 
rules for resolving operator precedence. If you 
have a question about which operator has a higher 
precedence, look it up in the chart in Figure 5.6. 
Here’s how the chart works.

OrderOperators by Precedence
Left to Right

Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right

Left to Right

Right to Left
Right to Left

Right to Left
Right to Left

->, ., ++postfix, --postfix

*pointer, &address of, +unary, -unary, !, ~, ++prefix, --prefix, sizeof

*multiply, /, %
+binary, -binary

&bitwise=and

<<left-shift, >>right-shift

Typecast

^
|
&&
||
?:

,
=, +=, -=, *=, /=, %=, >>=, <<=, &=, |=, ^=

>, >=, <, <=
==, !=

Figure 5.6 The relative precedence of C’s built-in 
operators. The higher the position in the chart, the higher 
the precedence.

The higher an operator is in the chart, the higher its 
precedence. For example, suppose you are trying to 
predict the result of this line of code:

myInt = 5 * 3 + 7;
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First, look up the operator * in the chart. Hmmm... 
* seems to be in the chart twice, once with label 
pointer and once with the label multiply. 
You can tell just by looking at this line of code that 
we want the multiply version. The compiler is 
pretty smart. Just like you, it can tell that this is the 
multiply version of *.

OK, now look up +. Yup - it’s in there twice also, 
once as unary and once as binary. A unary + or 
- is the sign that appears before a number, like +47 
or -32768. In our line of code, the + operator has two 
operands, so clearly binary + is the one we want.

Now that you’ve figured out which operator is which, 
you can see that the multiply * is higher up on 
the chart than the binary +, and thus has a higher 
precedence. This means that the * will get evaluated 
before the +, as if the expression were written as:

myInt = (5 * 3) + 7;

So far so good. Now what about this line of code:

myInt = 27 * 6 % 5;

Both of these operators are on the fourth line in 
the chart. Which one gets evaluated first? If both 
operators under consideration are on the same line 
in the chart, the order of evaluation is determined 

by the entry in the chart’s right-most column. In this 
case, the operators are evaluated from left to right. In 
the current example, % will get evaluated before *, as 
if the line of code were written:

myInt = 27 * (6 % 5);

What about this line of code:

myInt = 27 % 6 * 5;

In this case, the * will get evaluated before the %, as if 
the line of code were written:

myInt = 27 % (6 * 5);

Of course, you can avoid this exercise altogether 
with a judicious sprinkling of parentheses. As you 
look through the chart, you’ll definitely notice some 
operators that you haven’t learned about yet. As you 
read through the book and encounter new operators, 
check back with the chart to see where it fits in.
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Sample Programs
So far in this chapter, we’ve discussed variables 
(mostly of type int) and operators (mostly 
mathematical). The program examples on the 
following pages combine variables and operators 
into useful C statements. We’ll also learn about 
a powerful part of the Standard Library, the 
printf() function.

Opening operator.xcode
Our next program, operator, provides a testing 
ground for some of the operators covered in the 
previous sections. main.c declares a variable 
(myInt) and uses a series of statements to change 
the value of the variable. By including a printf() 
after each of these statements, main.c makes it 
easy to follow the variable, step by step, as its value 
changes.

In Xcode, close any project windows that may be 
open. In the Finder, locate the Learn C Projects folder 
and the 05.0 – operator subfolder, then double-click 
the file operator.xcode. The operator project window 
should appear (Figure 5.7).

Remember, you can double-click on the source code 
file name to open a new editing window, or you can 
click the Show/Hide Editor icon to open an editing 
pane within the project window.

Figure 5.7 The operator project window.

Run operator by selecting Build and Run from 
the Build menu. Xcode will first attempt to compile 
main.c, then run it. Compare your output to that 
shown in Figure 5.8. They should be about the same.
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Figure 5.8 The operator’s output.

Stepping Through the Source Code
Before we walk through the source code in main.
c, you might want to bring the source code up on 
your screen (double-click on the name main.c in the 
project window, or click on the Show/Hide Editor 
icon).

main.c starts off with a #include statement that 
gives us access to a bunch of Standard Library 
functions, including printf():

#include <stdio.h>

main() starts out by defining an int named 
myInt.

int main (int argc, const char * argv[])

{
 int myInt;

Note that earlier I used the term “declaring a variable” 
and now I’m using the term “defining”. What’s the 
difference? A variable declaration is any statement 
that specifies a variable’s name and type. The line:

int myInt;

certainly does that. A variable definition is a 
declaration that causes memory to be allocated for 
the variable. Since the previous statement does cause 
memory to be allocated for myInt, it does qualify 
as a definition. Later in the book, you’ll see some 
declarations that don’t qualify as definitions. For now, 
just remember, a definition causes memory to be 
allocated.

At this point in the program (after myInt has been 
declared but before any value has been assigned to 
it), myInt is said to be uninitialized. In computerese, 
the term initialization refers to the process of 
establishing a variable’s value for the first time. A 
variable that has been declared, but that has not had 
a value assigned to it, is said to be uninitialized. You 
initialize a variable the first time you assign a value to 
it.

Since myInt was declared to be of type int, and 
since Xcode is currently set to use 4 byte ints, 4 
bytes of memory were reserved for myInt. Since we 
haven’t placed a value in those 4 bytes yet, they could 
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contain any value at all. Some compilers place a value 
of 0 in a newly allocated variable, but there are some 
compilers that do not. The key is, don’t depend on a 
variable being preset to some specific value. If you 
want a variable to contain a specific value, assign the 
value to the variable yourself!

Later in the book, you’ll learn about global variables. 
Global variables are always set to 0 by the compiler. 
All the variables used in this chapter are local 
variables, not global variables. Local variables are not 
guaranteed to be initialized by the compiler.

The next line of code uses the * operator to assign 
a value of 6 to myInt. Following that, we use 
printf() to display the value of myInt in the 
console window.

 myInt = 3 * 2;
 printf( “myInt ---> %d\n”, myInt );

The code between printf()’s left and right 
parentheses is known as a parameter list. The 
parameters in a parameter list (also known as 
arguments) are automatically provided to the 
function you are calling (in this case, printf()). 
The receiving function can use the parameters passed 
to it to determine its next course of action. We’ll get 
into the specifics of parameter passing in Chapter 7. 
For the moment, let’s talk about printf() and the 
parameters used by this Standard Library function.

The first parameter passed to printf() defines 
what will be drawn in the console window. The 
simplest call to printf() uses a quoted text string 
as its only parameter. A quoted text string consists 
of a pair of double-quote characters (“) with zero or 
more characters between them. For example, this call 
of printf():

printf( “Hello!” );

will draw the characters Hello! in the console 
window. Notice that the double-quote characters are 
not part of the text string.

You can request that printf() draw a variable’s 
value in the midst of the quoted string. In the case of 
an int, do this by embedding the two characters %d 
within the first parameter and by passing the int as 
a second parameter. printf() will replace the %d 
with the value of the int.

In these two lines of code, we first set myInt to 6, 
use printf() to print the value of myInt in the 
console window.

 myInt = 3 * 2;
 printf( “myInt ---> %d\n”, myInt );

This code produces this line of output in the console 
window:
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myInt ---> 6

The two characters “\n” in the first parameter 
represent a carriage return and tell printf() to 
move the cursor to the beginning of the next line 
before it prints any more characters.

The %d is known as a format specifier. The d in 
the format specifier tells printf() that you are 
printing an integer variable, such as an int.

You can place any number of % specifications in 
the first parameter, as long as you follow the first 
parameter by the appropriate number of variables. 
Here’s another example:

int var1, var2;

var1 = 5;
var2 = 10;
printf( “var1 = %d\n\nvar2 = %d\n”, var1, var2 
);

will draw the text

var1 = 5

var2 = 10

in the console window. Notice the blank line between 
the two lines of output. It was caused by the “\n\n” 
in the first printf() parameter. The first carriage 
return placed the cursor at the beginning of the next 
console line (directly under the v in var1). The 
second carriage return moved the cursor down one 
more line, leaving a blank line in its path.

Let’s get back to our source code. The next line of 
main.c increments myInt from 6 to 7, and prints the 
new value in the console window.

 myInt += 1;
 printf( “myInt ---> %d\n”, myInt );

The next line decrements myInt by 5, and prints its 
new value of 2 in the console window.

 myInt -= 5;
 printf( “myInt ---> %d\n”, myInt );

Next, myInt is multiplied by 0, and its new value of 
20 is printed in the console window.

 myInt *= 10;
 printf( “myInt ---> %d\n”, myInt );

Next, myInt is divided by 4, resulting in a new value 
of 5.
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 myInt /= 4;
 printf( “myInt ---> %d\n”, myInt );

Finally, myInt is divided by 2. Since 5 divided by 2 is 
2.5 (not a whole number), a truncation is performed 
and myInt is left with a value of 2. 

 myInt /= 2;
 printf( “myInt ---> %d”, myInt );

 return 0;
}

Opening postfix.xcode
Our next program demonstrates the difference 
between postfix and prefix notation (remember the 
++ and -- operators defined earlier in the chapter?) 
If you have a project open in Xcode, close it. In the 
Finder, go into the Learn C Projects folder, then into 
the 05.02 - postfix subfolder, and double-click on the 
project file postfix.xcode.

Take a look at the source code in the file main.c and 
try to predict the result of the two printf() calls 
before you run the program. Careful, this one’s tricky.

Once your guesses are locked in, select Build and 
Run from the Build menu. How’d you do? Compare 
your two guesses with the output in Figure 5.9. Let’s 
look at the source code.

Figure 5.9 The output generated by postfix.

Stepping Through the Source Code
The first half of main.c is pretty straightforward. The 
variable myInt is defined to be of type int. Then, 
myInt is assigned a value of 5. Next comes the tricky 
part.

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int  myInt;
 
 myInt = 5;

The first call to printf() actually has a statement 
embedded in it. This is another great feature of 
the C language. Where there’s room for a variable, 
there’s room for an entire statement. Sometimes it’s 
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convenient to perform two actions within the same 
line of code. For example, this line of code:

printf( “myInt ---> %d\n”, myInt = myInt * 3 
);

first triples the value of myInt, then passes the result 
(the tripled value of myInt) on to printf(). The 
same could have been accomplished using two lines 
of code:

myInt = myInt * 3;
printf( “myInt ---> %d\n”, myInt );

In general, when the compiler encounters an 
assignment statement where it expects a variable, it 
first completes the assignment, then passes on the 
result of the assignment as if it were a variable. Let’s 
see this technique in action.

In main.c, our friend the postfix operator emerges 
again. Just prior to the two calls of printf(), 
myInt has a value of 5. The first of the two 
printf()’s increments the value of myInt using 
postfix notation:

 printf( “myInt ---> %d\n”, myInt++ );

The use of postfix notation means that the value 

of myInt will be passed on to printf() before 
myInt is incremented. This means that the first 
printf() will accord myInt a value of 5. However, 
when the statement is finished, myInt will have a 
value of 6.

The second printf() acts in a more rational (and 
preferable) manner. The prefix notation guarantees 
that myInt will be incremented (from 6 to 7) before 
its value is passed on to printf().

 printf( “myInt ---> %d”, ++myInt );
 
 return 0;
}
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Can you break each of these printf()s into two 
separate statements? Give it a try, then read on...

The first printf() looks like this:

printf( “myInt ---> %d\n”, myInt++ );

Here’s the two statement version:

printf( “myInt ---> %d\n”, myInt );

myInt++;

Notice that the statement incrementing myInt was 
placed after the printf(). Do you see why? The 
postfix notation makes this necessary. Run through 
both versions and verify this for yourself.

The second printf() looks like this:

printf( “myInt ---> %d”, ++myInt );

Here’s the two statement version:

++myInt;

printf( “myInt ---> %d\n”, myInt );

This time the statement incrementing myInt came 
before the printf(). This time, it’s the prefix 
notation that makes this necessary. Again, go through 
both versions and verify this for yourself.

The purpose of demonstrating the complexity of the 
postfix and prefix operators is twofold. On one hand, 
it’s extremely important that you understand exactly 
how these operators work from all angles. This will 
allow you to write code that works and will aid you in 

making sense of other programmers’ code.

On the other hand, embedding prefix and postfix 
operators within function parameters may save you 
lines of code but, as you can see, may prove a bit 
confusing. So what’s a coder to do? Clarity before 
brevity. Make sure your code is readable. After all, 
you will likely have to go back and edit it at some 
point. Readable code is much easier to maintain.

Backslash Combinations
The last program in Chapter 5, slasher, 
demonstrates several different backslash 
combinations. A backslash combination combines 
a backslash character (“\”) and a second character 
to produce a specific result when the combination 
is printed in the console window. One backslash 
combination you’ve seen a lot of in this book is “\n”, 
which produces a new line in the console.

C allows you to embed any number of backslash 
combinations in a text string. For example, this line 
of code:

printf( “Hello\n\nGoodbye” );

produces this output in the console window:

Hello

Goodbye
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The single blank line between “Hello” and “Goodbye” 
was caused by the two “\n” characters. The first “\n” 
would have caused the console to put “Goodbye” on 
the line immediately below “Hello”. The second “\n” 
moved the “Goodbye” down one more line.

There are a number of backslash combinations. We’ll 
discuss a few of the more interesting ones.

“\r” causes the cursor to move to the beginning of 
the same line. This allows you to draw some text then 
go back and overwrite the same text.

“\b” is a backspace character. This has the same 
affect as if you hit the delete key while you were 
typing, erasing the last character typed.

“\\” allows you to place a backslash character in a 
string. Think about this for a moment. If you simply 
embedded a backslash character in your string, the 
compiler would attempt to combine the backslash 
with the very next character, producing some 
unpredictable results. Unpredictable is bad.

“\”” allows you to place a quote character in a 
string. When the compiler first sees a double-quote 
character in your code, it assumes you are starting a 
text string. It keeps reading, reading, reading, until 
it encounters a second, matching double-quote 
character. The second quote tells the compiler that 
it has reached the end of the string. So how do you 
place a quote character inside a string without ending 
the string? Easy. Use the “\”” where you want the 
quote to appear.

“\t” allows you to place a tab in a string.

“\a” embeds a single beep in the string. 

Support for Backslash Combinations
Backslash combinations stem from the olden days, 
where all programs ran on video displays with a 
fixed number of rows and columns. The backslash 
combinations helped programmers overcome 
the limitations of these displays, giving them a bit 
more control. As computers evolved, many of these 
backslash combinations became unnecessary. Over 
time, many development environments stopped 
supporting all but the most basic of these.

To see this for yourself, we’ll run our next program, 
slasher, using the Terminal application that ships 
with Mac OS X. The Terminal app implements a 
classic console window that supports all the well 
known backslash combinations, just like an old video 
display terminal. We’ll use the built in Unix tools 
that you installed when you installed Xcode at the 
beginning of the book to compile the program as 
well.

Though Xcode doesn’t support many of the backslash 
combinations that we used in slasher, I built a 
project file for it anyway. After you are done playing 
with the Unix version of slasher, take the Xcode 
version for a spin. You’ll find it in the Learn C Projects 
folder, in the 05.03 – slasher subdirectory. 
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Running slasher
In the Finder, go to the Learn C Projects folder, into 
the 05.03 – slasher subdirectory, and double-click 
on the file named slasher. The Terminal application 
will launch and a new window will appear, similar 
to the one shown in Figure 5.0. If you’ve never used 
the Terminal before, this may look a bit cryptic. The 
Terminal is similar to Xcode’s console window. No 
graphics, just a scrolling series of lines of text. 

Figure 5.0 Running slasher using the Terminal 
application.

You can ignore the first six lines of text in the 
Terminal window. The key lines of output to pay 
attention to are these six:

1111100000
0011
Here’s a backslash...\...for you.
Here’s a double quote...”...for you.
Here are a few tabs...                        
  ...for you.

Here’s a beep......for you.

As we step through the source code, you’ll see a 
series of six printf()s, each of which corresponds 
to one of these lines of output. Once we finish 
going through the source code, we’ll take a shot at 
compiling the source using the Unix compiler and 
the Terminal, instead of using Xcode.

Stepping Through the Source Code
main.c consists of a series of printf()s, each 
of which demonstrates a different backslash 
combination. The first printf() prints a series of 
ten zeros, followed by the characters \r (also known 
as the backslash combination \r). The \r backslash 
combination generates a carriage return without a 
line feed, leaving the cursor at the beginning of the 
current line (unlike \n, which leaves the cursor at the 
beginning of the next line down).

#include <stdio.h>

int main (int argc, const char * argv[])
{
 printf( “0000000000\r” );
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The next printf() prints five s over the first 
five 0s, as if someone had printed the text string 
“1111100000”. The \n at the end of this 
printf() moves the cursor to the beginning of the 
next line in the console window.

 printf( “11111\n” );

The next printf() demonstrates \b, the 
backspace backslash combination. \b tells 
printf() to back up one character so that the next 
character printed replaces the last character printed. 
This printf() sends out four 0s, backspaces over 
the last two, then prints two s. The result is as if you 
had printed the string “0011”.

 printf( “0000\b\b11\n” );

The \ can also be used to cancel a character’s special 
meaning within a quoted string. For example, 
the backslash combination \\ generates a single 
\ character. The difference is, this \ loses its special 
backslash powers. It doesn’t affect the character 
immediately following it.

The backslash combination \” generates a “ 
character, taking away the special meaning of the 
“. As we said earlier, without the \ before it, the “ 
character would mark the end of the quoted string. 
The \ allows you to include a “ inside a quoted 

string.

The backslash combinations \\ and \” are 
demonstrated in the next two printf()s:

 printf( “Here’s a backslash...\\...for you.\
n” );

 printf( “Here’s a double quote...\”...for 
you.\n” );

The \t combination generates a single tab character. 
The console window has a tab stop every eight 
spaces. Here’s a printf() example:

 printf( “Here’s a few tabs...\t\t\t\t...for 
you.\n” );

While the Mac offers a host of sound options, most 
text-based computer consoles offer one: the beep. 
While a beep isn’t quite as interesting as a Clank! 
or a Boing!, it can still serve a useful purpose. The 
\a backslash combination provides a simple way to 
make your Mac beep.

 printf( “Here’s a beep...\a...for you.\n” );

 return 0;
}
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Building slasher
This section is completely optional. You can skip it 
entirely, or scan it to follow along, or do every darned 
step along the way. We’re going to use the Terminal 
to compile the slasher source code into a runnable 
Unix application. In effect, we’re going to rebuild the 
slasher app that you just ran.

In your home directory, create a new folder called 
slasher. Your home directory is the directory with 
the house icon, named with your login name. For 
example, my home directory is in the Users folder 
and is called davemark.

Next, locate the folder containing the slasher 
project. You’ll find it in the Learn C Projects 
directory, in the 05.03 – slasher subdirectory. Inside 
that folder, you’ll find a file named main.c which 
contains the slasher source code. Use the Finder 
to drag a copy of main.c into the new slasher folder 
you created in your home directory.

If Terminal is running, open a new window by 
selecting New Shell from the File menu. If Terminal 
is not running, launch it. You’ll find it in the 
Applications folder, in the Utilities subfolder.

At this point, you should have a slasher folder in your 
home folder containing a copy of slasher’s main.c file 
and a new Terminal window which looks like the one 
shown in Figure 5..

Figure 5. A brand new Terminal window.

We’re now going to type some Unix commands into 
the Terminal window. Our first goal is to make sure 
we can see the new slasher folder we just created in 
our home directory. Type this command, followed by 
a carriage return:

cd ~

Note that there is a space in between the cd and the 
tilde character (“~”). This command tells Unix to 
change your directory (cd) to the tilde directory. In 
Unix-speak, the tilde directory is always your home 
directory.

Next, you’ll type the command:
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ls

followed by a carriage return. This command asks 
Unix to list all the visible files in the current directory 
which, in this case, is your home directory. Here’s the 
list I got:

Desktop    Library    Music      Public     
slasher

Documents  Movies     Pictures   Sites

Note that our newly created slasher directory is in 
this list. If you don’t see slasher in your list, chances 
are good that you created the directory in the wrong 
place. Go find the folder, drag it into your home 
directory, then go back to Terminal and do another 
ls.

Next, let’s go into the slasher directory and make 
sure the main.c file is there. Issue these two 
commands:

cd slasher
ls

Remember to type a carriage return after each 
command. The first command changes directories to 
the slasher directory. The second command lists the 
visible files in that directory. Here’s the results of my 

ls:

main.c

If your slasher directory is empty, you did not 
successfully copy main.c into the slasher folder you 
created. Go fix that.

Once ls shows main.c in the slasher directory, you 
are ready to do a compile. Type this command:

cc -o slasher main.c

Be sure to end it with a carriage return. You’ve just 
asked Unix to compile the C code in the file main.c 
and link the resulting object code into an executable 
file named slasher. The “-o” tells the cc command 
that you want to name the output, the word 
“slasher” tells it the name to use. If you left out the 
“-o slasher” from the command, cc would put 
the output in a file named a.out.

To see the results of your compile, do another ls. 
Here’s the results you should see:

main.c  slasher

Notice that a new file named slasher has been 
created. You can run this program by typing this 



69

Chapter 5:  
C Basics: 
Variables and 
Operators

command:

./slasher

Note the “./” before the word slasher. This tells 
Unix to run the slasher in the current directory, 
as opposed to some other file named slasher that 
might be elsewhere in its search path.

Here’s the output I saw when I ran my copy of 
slasher:

1111100000
0011
Here’s a backslash...\...for you.
Here’s a double quote...”...for you.
Here are a few tabs...                        
  ...for you.

Here’s a beep......for you.

Feel free to quit Terminal. Your work here is done.

Those are all the sample programs for this chapter. 
Before we move on, however, I’d like to talk to you 
about something personal. It’s about your coding 
habits.

Sprucing Up Your Code
You are now in the middle of your C learning curve. 
You’ve learned about variables, types, functions, and 
bytes. You’ve learned about an important part of the 
Standard Library, the function printf(). It’s at this 
point in the learning process that programmers start 
developing their coding habits.

Coding habits are the little things programmers 
do that make their code a little bit different (and 
hopefully better!) than anyone else’s. Before you get 
too set in your ways, here are a few coding habits you 
can, and should, add to your arsenal.

Source Code Spacing
You may have noticed the tabs, spaces, and blank 
lines scattered throughout the sample programs. 
These are known in C as white space. With a few 
exceptions, white space is ignored by C compilers. 
Believe it or not, as far as the C compiler goes, this 
program:

#include <stdio.h>
int main (int argc,
const char * argv[]){
 int myInt;myInt

=
5
;
printf(“myInt=”,myInt);}
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is equivalent to this program:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int myInt;

 myInt = 5;
 printf( “myInt =”, myInt );
}

The C compiler doesn’t care if you put five 
statements per line, or if you put 20 carriage returns 
between your statements and your semicolons. One 
thing the compiler won’t let you do is place white 
space in the middle of a word, such as a variable or 
function name. For example, this line of code:

my  Int = 5;

won’t compile. Instead of a single variable named 
myInt, the compiler sees two items, one named my 
and the other named Int. Too much white space 
can confuse the compiler.

Too little white space can also confuse the compiler. 
For example, this line of code won’t compile:

intmyInt;

The compiler needs at least one piece of white space 
to tell it where the type ends and where the variable 
begins. On the other hand, as you’ve already seen, 
this line compiles just fine:

myInt=5;

Since a variable name can’t contain the character 
“=”, the compiler has no problem telling where the 
variable ends and where the operator begins.

As long as your code compiles properly, you’re free to 
develop your own white-space style. Here are a few 
hints...

4 Place a blank line between your variable 
declarations and the rest of your function’s code. 
Also, use blank lines to group related lines of code.

4 Sprinkle single spaces throughout a statement. 
Compare this line:

   printf(“myInt=”,myInt);

with this line:

   printf( “myInt =”, myInt );
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The spaces make the second line easier to 
read.

4 When in doubt, use parentheses. Compare this 
line:

   myInt=var1+2*var2+4;

 with this line:

   myInt = var1 + (2*var2) + 4;

What a difference parentheses and spaces make!

4 Always start variable names with a lower-case 
letter, using an upper-case letter at the start of 
each subsequent word in the name. This yields 
variable names such as myVar, areWeDone, 
and employeeName.

4 Always start function names with an upper-case 
letter, using an upper-case letter at the start of 
each subsequent word in the name. This yields 
function names such as DoSomeWork(), 
HoldThese(), and DealTheCards().

These hints are merely suggestions. Use a set of 

standards that make sense for you and the people 
with whom you work. The object here is to make 
your code as readable as possible.

Comment Your Code
One of the most critical elements in the creation 
of a computer program is clear and comprehensive 
documentation. When you deliver your award-
winning graphics package to your customers, you’ll 
want to have two sets of documentation. One set 
is for your customers, who’ll need a clear set of 
instructions that guide them through your wonderful 
new creation.

The other set of documentation consists of the 
comments you’ll weave throughout your code. 
Source code comments act as a sort of narrative, 
guiding a reader through your source code. You’ll 
include comments that describe how your code 
works, what makes it special, and what to look out 
for when changing it. Well-commented code includes 
a comment at the beginning of each function that 
describes the function, the function parameters, 
and the function’s variables. It’s also a good idea to 
sprinkle individual comments among your source 
code statements, explaining the role each line plays 
in your program’s algorithm. How do you add a 
comment to your source code? Take a look...

All C compilers recognize the sequence /* as the 
start of a comment and will ignore all characters 
until they hit the sequence */ (the end of comment 
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characters). Here’s some commented code:

int main (int argc, const char * argv[])
{
 int numPieces;/* Number of pieces of pie left 
*/

 numPieces = 8; /* We started with 8 pieces  
*/

 numPieces--; /* Marge had a piece  */
 numPieces--; /* Lisa had a piece  */
 numPieces -= 2;/* Bart had two pieces!!  */
 numPieces -= 4;/* Homer had the rest!!!  */

 printf( “Slices left = %d”, numPieces ); 
/* How about

some cake
instead?  */

 return 0;
}

Notice that, although most of the comments fit on 
the same line, the last comment was split between 
three lines. The above code will compile just fine.

Most modern C compilers will also accept the C++ 
commenting convention. C++ ignores the remainder 
of a line of code, once it encounters the characters 
“//”. For example, this line of code combines both 
comment styles:

printf( “Hello” /* C comment */ ); // 
C++ comment!!! 

Use the C++ comment mechanism if you are sure 
you won’t be porting your code to a C compiler that 
doesn’t understand the C++ mechanism.

 

Since each of the programs in this book are examined 
in detail, line by line, the comments were left out. 
This was done to make the examples as simple as 
possible. In this instance, do as we say, not as we do. 
Comment your code. No excuses!
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What’s Next?
This chapter introduced the concepts of variables and 
operators, tied together in C statements, separated 
by semicolons. We looked at several examples, each 
of which made heavy use of the Standard Library 
function printf(). We learned about the console 
window, quoted strings, and backslash combinations.

Chapter 6 will increase our programming options 
significantly, introducing C control structures such as 
the for loop and the if ... then ... else 
statement. Get ready to expand your C-programming 
horizons. See you in Chapter 6.
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Exercises

) Find the error in each of the following code 
fragments:

 a. printf( Hello, world );

 b. int myInt  myOtherInt;

 c. myInt =+ 3;

 d. printf( “myInt = %d” );

 e. printf( “myInt = “, myInt );

 f. printf( “myInt = %d\”, myInt );

 g. myInt + 3 = myInt;

 h. int main (int argc, const char * argv[])
  {
   int   myInt;
   myInt = 3;
   anotherInt = myInt;

   return 0;
  }

2) Compute the value of myInt after each code 
fragment is executed:

 a. myInt = 5;
  myInt *= (3+4) * 2;

 b. myInt = 2;
  myInt *= ( (3*4) / 2 ) - 9;

 c. myInt = 2;
  myInt /= 5;
  myInt--;

 d. myInt = 25;
  myInt /= 3 * 2;

 e. myInt = (3*4*5) / 9;
  myInt -= (3+4) * 2;

 f. myInt = 5;
  printf( “myInt = %d”, myInt = 2 );

 g. myInt = 5;
  myInt = (3+4) * 2;

 h. myInt = 1;
  myInt /= (3+4) / 6;
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o far, you’ve learned quite a bit about the C language. 
You know about functions (especially one named 
main()), which are made up of statements, each of 
which is terminated by a semicolon. You know about 
variables, which have a name and a type. Up to this 
point, you’ve dealt with variables of type int.

You also know about operators, such as =, +, and +=. 
You’ve learned about postfix and prefix notation, and 
the importance of writing clear, easy-to-understand 
code. You’ve learned about the Standard Library, a 
set of functions that comes as standard equipment 
with every C programming environment. You’ve also 
learned about printf(), an invaluable component 
of the Standard Library.

Finally, you’ve learned a few housekeeping 
techniques to keep your code fresh, sparkling, 
and readable. Comment your code, because your 
memory isn’t perfect, and insert some white space to 
keep your code from getting too cramped.

Flow Control
One thing you haven’t learned about the C language 
is flow control. The programs we’ve written so far 
have all consisted of a straightforward series of 
statements, one right after the other. Every statement 
is executed in the order it occurred.

Flow control is the ability to control the order in 
which your program’s statements are executed. The 
C language provides several keywords you can use in 
your program to control your program’s flow. One of 
these is the if keyword.

The if Statement
The if keyword allows you to choose between 
several options in your program. In English, you 
might say something like this:

If it’s raining outside I’ll bring my 
umbrella;

otherwise I won’t.

In this sentence, you’re using if to choose between 
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two options. Depending on the weather, you’ll do one 
of two things. You’ll bring your umbrella or you won’t 
bring your umbrella. C’s if statement gives you this 
same flexibility. Here’s an example:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int myInt;

 myInt = 5;

 if ( myInt == 0 )
  printf( “myInt is equal to zero.” );
 else
  printf( “myInt is not equal to zero.” );

 return 0;
}

This program declares myInt to be of type int 
and sets the value of myInt to 5. Next, we use the 
if statement to test whether myInt is equal to 
0. If myInt is equal to 0 (which we know is not 
true), we’ll print one string. Otherwise, we’ll print a 
different string. As expected, this program prints the 
string “myInt is not equal to zero”.

if statements come two ways. The first, known as 
plain old if, fits this pattern:

if ( expression )
 statement

An if statement will always consist of the word if, 
a left parenthesis, an expression, a right parenthesis, 
and a statement. (We’ll define both expression and 
statement in a minute.) This first form of if executes 
the statement if the expression in parentheses is true. 
An English example of the plain if might be:

If it’s raining outside, I’ll bring my 
umbrella.

Notice that this statement only tells us what will 
happen if it’s raining outside. No particular action 
will be taken if it is not raining. 

The second form of if, known as if-else, fits this 
pattern:

if ( expression )
 statement
else
 statement

An if-else statement will always consist of the 
word if, a left parenthesis, an expression, a right 
parenthesis, a statement, the word else, and a 
second statement. This form of if executes the first 
statement if the expression is true, and executes 
the second statement if the expression is false. An 
English example of an if-else statement might be:
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If it’s raining outside, I’ll bring my 
umbrella,

otherwise I won’t.

Notice that this example tells us what will happen 
if it is raining outside (I’ll bring my umbrella) and if 
it isn’t raining outside (I won’t bring my umbrella). 
The example programs presented later in the chapter 
demonstrate the proper use of both if and if-
else.

Our next step is to define the terms expression and 
statement.

Expressions
In C, an expression is anything that has a value. For 
example, a variable is a type of expression, since 
variables always have a value. (Even uninitialized 
variables have a value—we just don’t know what 
the value is!) The following are all examples of 
expressions:

4 myInt + 3

4 ( myInt + anotherInt ) * 4

4 myInt++

An assignment statement is also an expression. Can 
you guess the value of an assignment statement? 
Think back to Chapter 5. Remember when we 
included an assignment statement as a parameter to 
printf()? The value of an assignment statement is 
the value of its left side. Check out the following code 
fragment:

myInt = 5;
myInt += 3;

Both of these statements qualify as expressions. 
The value of the first expression is 5. The value of 
the second expression is 8 (because we added 3 to 
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myInt’s previous value).

Literals can also be used as expressions. The 
number 8 has a value. Guess what? Its value is 8. 
All expressions, no matter what their type, have a 
numerical value.

Technically, there is an exception to this rule. The 
expression (void)0 has no value. In fact, any value 
or variable cast to type void has no value. Ummm, 
but Dave, what’s a cast? What is type void? We’ll 
get to both of these topics later in the book. For the 
moment, when you see void, think “no value”.

True Expressions
Earlier, we defined the if statement as follows:

if ( expression )
 statement

We then said the statement gets executed if the 
expression is true. Let’s look at C’s concept of truth.

Everyone has an intuitive understanding of the 
difference between true and false. I think we’d all 
agree that the statement:

5 equals 3

is false. We’d also agree that the statement:

5 and 3 are both greater than 0

is true. This intuitive grasp of true and false carries 
over into the C language. In the case of C, however, 
both true and false have numerical values. Here’s 
how it works.

In C, any expression that has a value of 0 is said to 
be false. Any expression with a value other than 0 is 
said to be true. As stated earlier, an if statement’s 
statement gets executed if its expression is true. To 
put this more accurately:

4 An if statement’s statement gets executed if (and 
only if ) its expression has a value other than 0.

Here’s an example:

myInt = 27;

if ( myInt )
 printf( “myInt is not equal to 0” );

The if statement in this piece of code first tests the 
value of myInt. Since myInt is not equal to 0, the 
printf() gets executed.
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Comparative Operators
C expressions have a special set of operators, called 
comparative operators. Comparative operators 
compare their left sides with their right sides and 
produce a value of either 1 or 0, depending on the 
relationship of the two sides.

For example, the operator == determines whether 
the expression on the left is equal in value to the 
expression on the right. The expression:

myInt == 5

evaluates to  if myInt is equal to 5, and to 0 if 
myInt is not equal to 5. Here’s an example of the == 
operator at work:

if ( myInt == 5 )
 printf( “myInt is equal to 5” );

If myInt is equal to 5, the expression myInt == 5 
evaluates to  and printf() gets called. If myInt 
wasn’t equal to 5, the expression evaluates to 0 and 
the printf() is skipped. Just remember, the key 
to triggering an if statement is an expression that 
resolves to a value other than 0.

Figure 6. shows some of the other comparative 
operators. You’ll see some of these operators in the 
example programs later in the chapter.

Resolves to 1 if...Operator
left side is equal to right==

left side is less than or equal to right<=
left side is greater than or equal to right>=

left side is less than right>=
left side is greater than right>=
left side is not equal to right>=

Figure 6. Comparitive Operators

Logical Operators
The C standard provides a pair of constants that 
really come in handy when dealing with our next set 
of operators. The constant true has a value of , 
while the constant false has a value of 0. You can 
use these constants in your programs to make them a 
little easier to read. Read on, and you’ll see why.

In addition to true and false, most C 
environments also provide the constants TRUE and 
FALSE (with values of 1 and 0 respectively). Some 
people prefer TRUE and FALSE, others prefer true 
and false. Pick a pair and stick with them. We’ll 
work with true and false throughout the rest of 
the book.

When you get to the truthTester program in 
just a bit, you’ll find a #include of the file <c.h> 
at the beginning of the file. This is where true and 
false are defined.
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Our next set of operators are known, collectively, 
as logical operators. The set of logical operators 
are modeled on the mathematical concept of truth 
tables. If you don’t know much about truth tables (or 
are just frightened by mathematics in general), don’t 
panic. Everything you need to know is outlined in the 
next few paragraphs.

The first of the set of logical operators is the ! 
operator. The ! operator turns true into false 
and false into true. Figure 6.2 shows the truth 
table for the ! operator. In this table, T stands for 
true and F stands for false. The letter A in the 
table represents an expression. If the expression A is 
true, applying the ! operator to A yields the value 
false. If the expression A is false, applying the ! 
operator to A yields the value true. The ! operator 
is commonly referred to as the NOT operator. !A is 
pronounced “NOT A”.

!AA
FT
TF

Figure 6.2 The truth table for the ! operator.

Here’s a piece of code that demonstrates the ! 
operator:

int myFirstInt, mySecondInt;

myFirstInt = false;
mySecondInt = ! myFirstInt;

First, we declare two ints. We assign the value 
false to the first int, then use the ! operator to 
turn the false into a true and assign it to the 
second int. This is really important. Take another 
look at Figure 6.2. The ! operator converts true 
into false and false into true. What this really 
means is that ! converts  to 0 and 0 to . This really 
comes in handy when you are working with an if 
statement’s expression, like this one:

if ( mySecondInt )
 printf( “mySecondInt must be true” );

The previous chunk of code translated 
mySecondInt from false to true, which is the 
same thing as saying that mySecondInt has a value 
of . Either way, mySecondInt will cause the if to 
fire, and the printf() will get executed.

Take a look at this piece of code:

if ( ! mySecondInt )
 printf( “mySecondInt must be false” );
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This printf() will get executed if mySecondInt 
is false. Do you see why? If mySecondInt is 
false, then !mySecondInt must be true.

The ! operator is a unary operator. Unary operators 
operate on a single expression (the expression to 
the right of the operator). The other two logical 
operators, && and ||, are binary operators. Binary 
operators, such as the == operator presented earlier, 
operate on two expressions, one on the left side and 
one on the right side of the operator.

The && operator is commonly referred to as the and 
operator. The result of an && operation is true if, 
and only if, both the left side and the right side are 
true. Here’s an example:

int hasCar, hasTimeToGiveRide;

hasCar = true;
hasTimeToGiveRide = true;

if ( hasCar && hasTimeToGiveRide )
 printf( “Hop in - I’ll give you a ride!\n” );
else
 printf( “I’ve either got no car, no time, or 
neither!\n” );

This example uses two variables. One indicates 
whether the program has a car, the other whether 
the program has time to give us a ride to the mall. 
All philosophical issues aside (can a program have 
a car?), the question of the moment is, which of the 

two printf()’s will fire? Since both sides of the 
&& were set to true, the first printf() will be 
called. If either one (or both) of the variables were set 
to false, the second printf() would be called. 
Another way to think of this is that we’ll only get 
a ride to the mall if our friendly program has a car 
and has time to give us a ride. If either of these is not 
true, we’re not getting a ride. By the way, notice the 
use here of the second form of if, the if-else 
statement.

The || operator is commonly referred to as the or 
operator. The result of a || operation is true if 
either the left side or the right side, or both sides, of 
the || are true. Put another way, the result of a || 
is false if, and only if, both the left side and the 
right side of the || are false. Here’s an example:

int nothingElseOn, newEpisode;

nothingElseOn = true;
newEpisode = true;

if ( newEpisode || nothingElseOn )
 printf( “Let’s watch Star Trek!\n” );
else
 printf( “Something else is on or I’ve seen 
this one.\n” );

This example uses two variables to decide whether or 
not we should watch Star Trek (your choice - TOS, 
TNG, DS9, STV, or STE). One variable indicates 
whether anything else is on right now, and the other 
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tells you whether this episode is a rerun. If this is 
a brand new episode, or if nothing else is on, we’ll 
watch Star Trek.

Here’s a slight twist on the previous example:

int nothingElseOn, itsARerun;

nothingElseOn = true;
itsARerun = false;

if ( (! itsARerun) || nothingElseOn )
 printf( “Let’s watch Star Trek!\n” );
else
 printf( “Something else is on or I’ve seen 
this one.\n” );

This time, we’ve replaced the variable newEpisode 
with its exact opposite, itsARerun. Look at the 
logic that drives the if statement. Now we’re 
combining itsARerun with the ! operator. Before, 
we cared whether the episode was a newEpisode. 
This time we are concerned that the episode is not a 
rerun. See the difference?

truthTester.xcode
Both the && and the || operators are summarized 
in the table in Figure 6.3. If you look in the folder 
Learn C Projects, you’ll find a subfolder 
named 06.0 - truthTester. main.c contains the three 
examples we just went through. Take some time to 
play with the code. Take turns changing the variables 

from true to false and back again. Use this code 
to get a good feel for the !, &&, and || operators.

You might also try commenting out the line 
#include <c.h> towards the top of the file. 
To do this, just insert the characters // at the very 
beginning of the line. When you compile, you’ll get 
an error telling you that “true is undeclared”. Worth 
remembering this! As you write your own programs, 
be sure to #include <c.h> if you want to use 
true and false.

BA A || BA && B
TT
FT
TF
FF

TT
TF
TF
FF

Figure 6.3 Truth table for the && and || operators.

On most keyboards, you type an & character by 
holding down the shift key and typing a 7. You type a 
| character by holding down the shift key and typing 
a \ (backslash). Don’t confuse the | with the letter l, 
i, or with the ! character.

Compound Expressions
All of the examples presented so far have consisted of 
relatively simple expressions. Here’s an example that 
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combines several different operators:

int myInt;

myInt = 7;

if ( (myInt >= 1) && (myInt <= 10) )
 printf( “myInt is between 1 and 10” );
else
 printf( “myInt is not between 1 and 10” );

This example tests whether a variable is in the range 
between  and 0. The key here is the expression:

(myInt >= 1) && (myInt <= 10)

that lies between the if statement’s parentheses. 
This expression uses the && operator to combine 
two smaller expressions. Notice that the two smaller 
expressions were each surrounded by parentheses to 
avoid any ambiguity. If we left out the parentheses, 
like so:

myInt >= 1 && myInt <= 10

the expression might not be interpreted as we 
intended. Once again, use parentheses for safe 
computing.

Statements
At the beginning of the chapter, we defined the if 
statement as:

if ( expression )
 statement

We’ve covered expressions pretty thoroughly. Now, 
we’ll turn our attention to the statement.

At this point in the book, you probably have a pretty 
intuitive model of the statement. You’d probably 
agree that this:

myInt = 7;

is a statement. But is this:

if ( isCold )
 printf( “Put on your sweater!” );

one statement or two? Actually, the previous code 
fragment is a statement within another statement. 
The printf() is one statement, residing within a 
larger statement, the if statement.

The ability to break your code out into individual 
statements is not a critical skill. Getting your code 
to compile, however, is critical. As new types of 
statements are introduced (like the if and if-
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else introduced in this chapter) pay attention to 
the statement syntax. And pay special attention to 
the examples. Where do the semicolons go? What 
distinguishes this type of statement from all other 
types?

As you build up your repertoire of statement types, 
you’ll find yourself using one type of statement 
within another. That’s perfectly acceptable in C. In 
fact, every time you create an if statement, you’ll 
use at least two statements, one within the other. 
Take a look at this example:

if ( myVar >= 1 )
 if ( myVar <= 10 )
  printf( “myVar is between 1 and 10” );

This example used an if statement as the statement 
for another if statement. This example calls the 
printf() if both if expressions are true; that is, 
if myVar is greater than or equal to  and less than or 
equal to 0. You could have accomplished the same 
result with this piece of code:

if ( ( myVar >= 1 ) && ( myVar <= 10 ) )
  printf( “myVar is between 1 and 10” );

The second piece of code is a little easier to read. 
There are times, however, when the method 
demonstrated in the first piece of code is preferred. 

Take a look at this example:

if ( myVar != 0 )
 if ( ( 1 / myVar ) < 1 )
  printf( “myVar is in range” );

One thing you don’t want to do in C is divide a 
number by 0. Any number divided by zero is infinity, 
and infinity is a foreign concept to the C language. 
If your program ever tries to divide a number by 0, 
your program is likely to crash. The first expression 
in this example tests to make sure myVar is not 
equal to zero. If myVar is equal to zero, the second 
expression won’t even be evaluated! The sole purpose 
of the first if is to make sure the second if never 
tries to divide by zero. Make sure you understand 
this point. Imagine what would happen if we wrote 
the code this way:

if ( (myVar != 0) && ((1 / myVar) < 1) )
  printf( “myVar is in range” );

As it turns out, if the left half of the && operator 
evaluates to false, the right half of the expression 
will never be evaluated and the entire expression will 
evaluate to false. Why? Because if the left operand 
is false, it doesn’t matter what the right operand 
is – true or false, the expression will evaluate 
to false. Be aware of this as you construct your 
expressions.
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The Curly Braces { }
Earlier in the book, you learned about the curly 
braces that surround the body of every function. 
These braces also play an important role in statement 
construction. Just as parentheses can be used to 
group terms of an expression together, curly braces 
can be used to group multiple statements together. 
Here’s an example:

onYourBack = TRUE;

if ( onYourBack )
{
 printf( “Flipping over” );
 onYourBack = FALSE;
}

In the example, if onYourBack is true, both of the 
statements in curly braces will be executed. A pair of 
curly braces can be used to combine any number of 
statements into a single super-statement, also known 
as a block. You can use this technique anywhere a 
statement is called for.

Curly braces can be used to organize your code, 
much as you’d use parentheses to ensure that an 
expression is evaluated properly. This concept is 
especially appropriate when dealing with nested 
statements. Consider this code, for example:

if ( myInt >= 0 )
 if ( myInt <= 10 )

  printf( “myInt is between 0 and 10.\n” );
else
 printf( “myInt is negative.\n” ); /* <---
Error!!! */

Do you see the problem with this code? Which 
if does the else belong to? As written (and as 
formatted), the else looks like it belongs to the 
first if. That is, if myInt is greater than or equal to 
0, the second if is executed, otherwise the second 
printf() is executed. Is this right?

Nope. As it turns out, an else belongs to the if 
closest to it (the second if, in this case). Here’s a 
slight rewrite:

if ( myInt >= 0 )
 if ( myInt <= 10 )
  printf( “myInt is between 0 and 10.\n” );
 else
  printf( “myInt is not between 0 and 10.\
n” );

One point here is that formatting is nice, but it won’t 
fool the compiler. More importantly, this example 
shows how easy it is to make a mistake. Check out 
this version of the code:

if ( myInt >= 0 )
{
 if ( myInt <= 10 )
  printf( “myInt is between 0 and 10.\n” );
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}
else
 printf( “myInt is negative.\n” );

Do you see how the curly braces help? In a sense, 
they act to hide the second if inside the first if 
statement. There is no chance for the else to 
connect to the hidden if.

No one I know ever got fired for using too many 
parentheses or too many curly braces.

Where to Place the Semicolon
So far, the statements we’ve seen fall into two 
categories. Function calls, such as calls to 
printf(), and assignment statements are called 
simple statements. Always place a semicolon at the 
end of a simple statement, even if it is broken over 
several lines, like this:

printf( “%d%d%d%d”, var1,
    var2,
    var3,
    var4 );

Statements made up of several parts, including, 
possibly, other statements, are called compound 
statements. Compound statements obey some pretty 
strict rules of syntax. The if statement, for example, 
always looks like this:

if ( expression )
 statement

Notice there are no semicolons in this definition. The 
statement part of the if can be a simple statement 
or a compound statement. If the statement is simple, 
follow the semicolon rules for simple statements and 
place a semicolon at the end of the statement. If the 
statement is compound, follow the semicolon rules 
for that particular type of statement.

Notice that using “curlies” to build a super-statement 
or block out of smaller statements does not require 
the addition of a semicolon.

The Loneliest Statement
Guess what? A single semicolon qualifies as a 
statement, albeit a somewhat lonely one. For 
example, this code fragment:

if ( bored )
 ;

is a legitimate (and thoroughly useless) if statement. 
If bored is true, the semicolon statement gets 
executed. The semicolon by itself doesn’t do anything 
but fill the bill where a statement is needed. There are 
times where the semicolon by itself is exactly what 
you need.
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The while Statement
The if statement uses the value of an expression to 
decide whether to execute or skip over a statement. 
If the statement is executed, it is executed just once. 
Another type of statement, the while statement, 
repeatedly executes a statement as long as a specified 
expression is true. The while statement follows 
this pattern:

while ( expression )
 statement

The while statement is also known as the while 
loop, because once the statement is executed, the 
while loops back to reevaluate the expression. 
Here’s an example of the while loop in action:

int i;

i=0;

while ( ++i < 3 )
 printf( “Looping: %d\n”, i );

printf( “We are past the while loop.” );

This example starts by declaring a variable, i, to be of 
type int. i is then initialized to 0. Next comes the 
while loop. The first thing the while loop does is 
evaluate its expression. The while loop’s expression is:

++i < 3

Before this expression is evaluated, i has a value of 
0. The prefix notation used in the expression (++i) 
increments the value of i to  before the remainder 
of the expression is evaluated. The evaluation of the 
expression results in true since  is less than 3. Since 
the expression is true, the while loop’s statement, 
a single printf() is executed. Here’s the output 
after the first pass through the loop:

Looping: 1

Next, the while loops back and reevaluates 
its expression. Once again, the prefix notation 
increments i, this time to a value of 2. Since 2 is less 
than 3, the expression evaluates to true, and the 
printf() is executed again. Here’s the output after 
the second pass through the loop:

Looping: 1
Looping: 2

Once the second printf() completes, it’s back to 
the top of the loop to reevaluate the expression. Will 
this never end? Once again, i is incremented, this 
time to a value of 3. Aha! This time, the expression 
evaluates to false, since 3 is not less than 3. Once 



88

Chapter 6:  
Controlling Your 
Program's Flow

the expression evaluates to false, the while loop 
ends and control passes to the next statement, the 
second printf() in our example:

printf( “We are past the while loop.” );

The while loop was driven by three factors: 
initialization, modification, and termination. 
Initialization is any code that affects the loop, but 
occurs before the loop is entered. In our example, the 
critical initialization occurred when the variable i 
was set to 0.

Frequently, you’ll use a variable in a loop that changes 
value each time through the loop. In our example, 
the variable i was incremented by 1 each time 
through the loop. The first time through the loop, i 
had a value of 1. The second time, i had a value of 2. 
Variables that maintain a value based on the number 
of times through a loop are known as counters.

In the interest of clarity, some programmers use 
names like counter, or loopCounter. The nice 
thing about names like i, j, and k is that they don’t 
get in the way, they don’t take up a lot of space on the 
line. On the other hand, your goal should be to make 
your code as readable as possible, so it would seem 
that a name like counter would be better than the 
uninformative i, j, or k.

Once again, pick a style you are comfortable with and 
stick with it!

Modification is any code within the loop that changes 
the value of the loop’s expression. In our example, the 
modification occurred within the expression itself when 
the counter, i, was incremented.

Termination is any condition that causes the loop to 
terminate. In our example, termination occurs when 
the expression has a value of false. This occurs 
when the counter, i, has a value that is not less than 
3. Take a look at this example:

int i;

i=1;

while ( i < 3 )
{
 printf( “Looping: %d\n”, i );
 i++;
}

printf( “We are past the while loop.” );

This example produces the same results as 
the previous example. This time, however, the 
initialization and modification conditions have 
changed slightly. In this example, i starts with a 
value of  instead of 0. In the previous example, the 
++ operator was used to increment i at the very top 
of the loop. This example modifies i at the bottom of 
the loop.

Both of these examples show different ways to 
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accomplish the same end. The phrase, “There’s 
more than one way to eat an Oreo,” sums up the 
situation perfectly. There will always be more than 
one solution to any programming problem. Don’t 
be afraid to do things your own way. Just make sure 
your code works properly and is easy to read.

The for Statement
Nestled inside the C toolbox, right next to the 
while statement, is the for statement. The for 
statement is similar to the while statement, 
following the basic model of initialization, 
modification, and termination. Here’s the pattern for 
a for statement:

for ( expression1 ; expression2 ; expression3 
)

 statement

The first expression represents the for statement’s 
initialization. Typically, this expression consists of 
an assignment statement, setting the initial value of 
a counter variable. This first expression is evaluated 
once, at the beginning of the loop.

The second expression is identical in function to 
the expression in a while statement, providing the 
termination condition for the loop. This expression 
is evaluated each time through the loop, before the 
statement is executed.

Finally, the third expression provides the 

modification portion of the for statement. This 
expression is evaluated at the bottom of the loop, 
immediately following execution of the statement.

All three of these expressions are optional and may 
be left out entirely. For example, here’s a for loop 
that leaves out all three expressions:

for ( ; ; )

DoSomethingForever();

Since this loop has no terminating expression, it is 
known as an infinite loop. Infinite loops are generally 
considered bad form and should be avoided like the 
plague!

The for loop can also be described in terms of a 
while loop:

expression1;
while ( expression2 )
{
 statement
 expression3;
}
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Since you can always rewrite a for loop as a while 
loop, why introduce the for loop at all? Sometimes, 
a programming idea fits more naturally into the 
pattern of a for statement. If the for loop makes 
for more readable code, why not use it? As you write 
more and more code, you’ll develop a sense for when 
to use the while and when to use the for.

Here’s an example of a for loop:

int i;

for ( i = 1; i < 3; i++ )
 printf( “Looping: %d\n”, i );

printf( “We are past the for loop.” );

This example is identical in functionality to the 
while loops presented earlier. Note the three 
expressions on the first line of the for loop. Before 
the loop is entered, the first expression is evaluated 
(remember, assignment statements make great 
expressions):

i = 1

Once the expression is evaluated, i has a value of 
. We are now ready to enter the loop. At the top of 
each pass through the loop, the second expression is 
evaluated:

i < 3

If the expression evaluates to true, the loop 
continues. Since i is less than 3, we can proceed. 
Next, the statement is executed:

printf( “Looping: %d\n”, i );

Here’s the first line of output:

Looping: 1

Having reached the bottom of the loop, the for 
evaluates its third expression:

i++

This changes the value of i to 2. Back to the top of 
the loop. Evaluate the termination expression:

i < 3

Since i is still less than 3, the loop continues. Once 
again, the printf() does its thing. The console 
window looks like this:



91

Chapter 6:  
Controlling Your 
Program's Flow

Looping: 1
Looping: 2

Next, the for evaluates expression3:

i++

incrementing the value of i to 3. Back to the top of 
the loop. Evaluate the termination expression:

i < 3

Lo and behold! Since i is no longer less than 3, the 
loop ends and the second printf() in our example 
is executed:

printf( “We are past the for loop.” );

As was the case with while, for can take full 
advantage of a pair of curly braces:

for ( i = 0; i < 10; i++ )
{
 DoThis();
 DoThat();
 DanceALittleJig();
}

In addition, both while and for can take advantage 

of the loneliest statement, the lone semicolon. This 
example:

for ( i = 0; i < 1000; i++ )
 ;

does nothing ,000 times. Actually, the example 
does take some time to execute. The initialization 
expression is evaluated once, and the modification 
and termination expressions are each evaluated ,000 
times. Here’s a while version of the loneliest loop:

i = 0;

while ( i++ < 1000 )
 ;

Some compilers will eliminate this loop and just 
set i to its terminating value (the value it would 
have if the loop executed normally). This is known 
as code optimization. The nice thing about code 
optimization is that it can make your code run 
faster and more efficiently. The down side is that 
an optimization pass on your code can sometimes 
have unwanted side-effects, like eliminating the 
while loop just discussed. It’s a good idea to get to 
know your compiler’s optimization capabilities and 
tendencies. Read the documentation!
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loopTester.xcode
Interestingly, there is an important difference 
between the for and while loops you just saw. 
Take a minute to look back and try to predict the 
value of i the first time through each loop and after 
each loop terminates. Were the results the same for 
the while and for loops? Hmmm... You might want 
to take another look. Here’s a sample program that 
should clarify the difference between these two 
loops. Look in the folder Learn C Projects, inside 
the subfolder named 06.02 - loopTester, and open 
the project loopTester.xcode. main.c implements a 
while loop and two slightly different for loops. 
Run the project. Your output should look like that 
shown in Figure 6.4.

Figure 6.4  The output from loopTester, showing the 
output from 3 different loops.

loopTester starts off with the standard 
#include. main() defines a counter variable, i, 
sets i to 0, then enters a while loop:

 while ( i++ < 4 )
  printf( “while: i=%d\n”, i );

The loop executes 4 times, resulting in this output:

while: i=1
while: i=2
while: i=3
while: i=4
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Do you see why? If not, go through the loop yourself, 
calculating the value for i each time through the 
loop. Remember, since we are using postfix notation 
(i++), i gets incremented after the test is made to 
see if it is less than 4. The test and the increment 
happen at the top of the loop, before the loop is 
entered.

Once the loop completes, we print the value of i 
again:

 printf( “After while loop, i=%d.\n\n”, i );

Here’s the result:

After while loop, i=5.

Here’s how we got that value. The last time through 
the loop (with i equal to 4), we go back to the top of 
the while loop, test to see if i is less than 4 (it no 
longer is), then do the increment of i, bumping it 
from 4 to 5.

OK, one loop down, two to go. This next loop 
looks like it should accomplish the same thing. The 
difference is, we don’t do the increment of i till the 
bottom of the loop, till we’ve been through the loop 
once already.

 for ( i = 0; i < 4; i++ )

  printf( “first for: i=%d\n”, i );

As you can see by the output, I

 ranges from 0 to 3 instead of from  to 4.

first for: i=0
first for: i=1
first for: i=2
first for: i=3

Once we drop out of the for loop, we once again 
print the value of i:

 printf( “After first for loop, i=%d.\n\n”, i 
);

Here’s the result:

After first for loop, i=4.

As you can see, the while loop ranged i from  to 
4, leaving i with a value of 5 at the end of the loop. 
The for loop ranged i from 0 to 3, leaving i with 
a value of 4 at the end of the loop. So how do we fix 
the for loop so it works the same way as the while 
loop? Take a look:

 for ( i = 1; i <= 4; i++ )
  printf( “second for: i=%d\n”, i );
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This for loop started i at  instead of 0. It tests to 
see if i is less than or equal to 4 instead of just less 
than 4. We could also have used the terminating 
expression i < 5 instead. Either one will work. As 
proof, here’s the output from this loop:

second for: i=1
second for: i=2
second for: i=3
second for: i=4

Once again, we print the value of i at the end of the 
loop:

 printf( “After second for loop, i=%d.\n”, i 
);

 
 return 0;
}

Here’s the last piece of output:

After second for loop, i=5.

This second for loop is the functional equivalent to 
the while loop. Take some time to play with this 
code. You might try to modify the while loop to 
match the first for loop.

By far, the while and for statements are the 

most common types of C loops. For completeness, 
however, we’ll cover the remaining loop, a little-used 
gem called the do statement.

The do Statement
The do statement is a while statement that 
evaluates its expression at the bottom of its loop, 
instead of at the top. Here’s the pattern a do 
statement must match:

do
 statement
while ( expression ) ;

Here’s a sample:

i = 1;

do
{
 printf( “%d\n”, i );
 i++;
}
while ( i < 3 );

printf( “We are past the do loop.” );

The first time through the loop, i has a value of . 
The printf() prints a  in the console window, 
then the value of i is bumped to 2. It’s not until this 
point that the expression ( i < 3 ) is evaluated. 
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Since 2 is less than 3, a second pass through the loop 
occurs.

During this second pass, the printf() prints a 2 in 
the console window, then the value of i is bumped 
to 3. Once again, the expression ( i < 3 ) is 
evaluated. Since 3 is not less than 3, we drop out of 
the loop to the second printf().

The important thing to remember about do loops is 
this: Since the expression is not evaluated until the 
bottom of the loop, the body of the loop (the statement) 
is always executed at least once. Since for and while 
loops both check their expressions at the top of the 
loop, it’s possible for either to drop out of the loop 
before the body of the loop is executed.

Let’s move on to a completely different type of 
statement, known as the switch.

The switch
The switch statement uses the value of an 
expression to determine which of a series of 
statements to execute. Here’s an example that should 
make this concept a little clearer:

switch ( theYear )
{
 case 1066:
  printf( “Battle of Hastings” );
  break;
 case 1492:
  printf( “Columbus sailed the ocean blue” 
);

  break;
 case 1776:
  printf( “Declaration of Independence\n” 
);

  printf( “A very important document!!!” );
  break;
 default:
  printf( “Don’t know what happened during 
this year” );

}

The switch is constructed of a series of cases, 
each based on a specific value of theYear. If 
theYear has a value of 066, execution continues 
with the statement following that case’s colon, in this 
case, the line:

printf( “Battle of Hastings” );

Execution continues, line after line, until either the 
bottom of the switch (the right curly-brace) or a 
break statement is reached. In this case, the next 
line is a break statement.

The break statement comes in handy when you 
are working with switches and loops. The break 
tells the computer to jump immediately to the next 
statement after the end of the loop or switch. 

Continuing with the example, if theYear has a 
value of 492, the switch jumps to the lines:
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printf( “Columbus sailed the ocean blue” );
break;

A value of 776 jumps to the lines:

printf( “Declaration of Independence\n” );
printf( “A very important document!!!” );
break;

Notice that this case has two statements before the 
break. There is no limit to the number of statements 
a case can have. One is OK, 653 is OK. You can 
even have a case with no statements at all.

The original example also contains a default 
case. If the switch can’t find a case that matches 
the value of its expression, the switch looks for a 
case labeled default. If the default is present, 
its statements are executed. If no default is 
present, the switch completes without executing 
any of its statements.

Here’s the pattern the switch tries to match:

switch ( expression )
{
 case constant:
  statements
 case constant:
  statements
 default:
  statements

}

Why would you want a case with no statements? 
Here’s an example:

switch ( myVar )

{

case 1:

case 2:

DoSomething();

break;

case 3:

DoSomethingElse();

}

In this example, if myVar has a value of 1 or 2, the 
function DoSomething() is called. If myVar has 
a value of 3, the function DoSomethingElse() 
is called. If myVar has any other value, nothing 
happens. Use a case with no statements when 
you want two different cases to execute the same 
statements.
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Think about what happens with this example:

switch ( myVar )

{

case 1:

DoSometimes();

case 2:

DoFrequently();

default:

DoAlways();

}

If myVar is 1, all three functions will get called. 
If myVar is 2, DoFrequently() and 
DoAlways() will get called. If myVar has any 
other value, DoAlways() gets called by itself. This 
is a good example of a switch without breaks.

At the heart of each switch is its expression. Most 
switches are based on single variables but, as we 
mentioned earlier, assignment statements make 
perfectly acceptable expressions.

Each case is based on a constant. Numbers 
(like 47 or -2,932) are valid constants. Variables, 
such as myVar, are not. As you’ll see later, single-
byte characters (like ‘a’ or ‘\n’) are also valid 
constants. Multiple-byte character strings (like 
“Gummy-bear”) are not.

If your switch uses a default case, make 
sure you use it as shown in the pattern above. Don’t 
include the word case before the word default.

Breaks in Other Loops
The break statement has other uses besides the 
switch statement. Here’s an example of a break 
used in a while loop:

i=1;

while ( i <= 9 )
{
 PlayAnInning( i );
 if ( ItIsRaining() )
  break;
 i++;
}

This sample tries to play nine innings of baseball. As 
long as the function ItIsRaining() returns with 
a value of false, the game continues uninterrupted. 
If ItsRaining() returns a value of true, the 
break statement is executed and the program drops 
out of the loop, interrupting the game.

The break statement allows you to construct loops 
that depend on multiple factors. The termination 
of the loop depends on the value of the expression 
found at the top of the loop, as well as on any outside 
factors that might trigger an unexpected break.
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isOdd.xcode
This next program combines for and if statements 
to tell you whether the number  through 20 are odd 
or even, and if they are an even multiple of 3. It also 
introduces a brand new operator: the % operator. 
Go into the Learn C Projects folder, into the 06.03 - 
isOdd subfolder, and open the project isOdd.xcode.

Run isOdd.xcode. You should see something like the 
console window shown in Figure 6.5. You should see 
a line for each number from  through 20. Each of 
the numbers will be described as either odd or even. 
Each of the multiples of 3 will have additional text 
describing them as such. Here’s how the program 
works: Figure 6.5 Running isOdd.

Stepping Through the Source Code
main.c starts off with the usual #include and 
the beginning of main(). main() starts off by 
declaring a counter variable named i.

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int i;

Our goal here is to step through each of the numbers 
from  to 20. For each number, we want to check to 
see if the number is odd or even. We also want to 
check whether the number is evenly divisible by 3. 
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Once we’ve analyzed a number, we’ll use printf() 
to print a description of the number in the console 
window.

As we mentioned in Chapter 4, the scheme that 
defines the way a program works is called the 
program’s algorithm. It’s a good idea to try to work 
out the details of your program’s algorithm before 
writing even one line of source code.

As you might expect, the next step is to set up a for 
loop using i as a counter. i is initialized to . The 
loop will keep running as long as the value of i is 
less than or equal to 20. This is the same as saying 
the loop will exit as soon as the value of i is found to 
be greater than 20. Every time the loop reaches the 
bottom, the third expression, i++, will be evaluated, 
incrementing the value of i by . This is a classic for 
loop.

 for ( i = 1; i <= 20; i++ )
 {

Now we’re inside the for loop. Our goal is to print 
a single line for each number (i.e., one line each time 
through the for loop). If you check back to Figure 
6.4, you’ll notice that each line starts with the phrase:

The number x is

where x is the number being described. That’s the 
purpose of this first printf():

  printf( “The number %d is “, i );

Notice that this printf() wasn’t part of an if 
statement. We want this printf() to print its 
message every time through the loop. The next 
sequence of printf()s are a different story 
altogether.

The next chunk of code determines whether i is 
even or odd, then uses printf() to print the 
appropriate word in the console window. Because the 
last printf() didn’t end with a newline character 
(‘\n’), the word “even” or “odd” will appear 
immediately following:

The number x is

on the same line in the console window.

This next chunk of code introduces a brand new 
operator. % is a binary operator that returns the 
remainder when the left operand is divided by 
the right operand. For example, i % 2 divides 2 
into i and returns the remainder. If i is even, this 
remainder will be 0. If i is odd, this remainder will 
be .
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  if ( (i % 2) == 0 )
   printf( “even” );
  else
   printf( “odd” );

In the expression i % 3, the remainder will be 0 if i 
is evenly divisible by 3, and either  or 2 otherwise.

if ( (i % 3) == 0 )
 printf( “ and is a multiple of 3” );

If i is evenly divisible by 3, we’ll add the phrase:

“ and is a multiple of 3”

to the end of the current line. Finally, we add a period 
and a newline “.\n” to the end of the current line, 
placing us at the beginning of the next line of the 
console window.

 printf( “.\n” );

The loop ends with a curly brace. main() ends with 
our normal return and curly brace.

 }
 
 return 0;
}

nextPrime.xcode
Our next program focuses on the mathematical 
concept of prime numbers. A prime number is any 
number whose only factors are  and itself. For 
example, 6 is not a prime number because its factors 
are , 2, 3, and 6. The number 5 is prime because its 
factors are limited to  and 5. The number 2 isn’t 
prime — its factors are , 2, 3, 4, 6, and 2.

Our next program will find the next prime number 
greater than a specified number. For example, if we 
set our starting point to 4, the program would find 
the next prime, 7. We have the program set up to 
check for the next prime after 9. Know what that is?

Go into the folder Learn C Projects, into the 
subfolder 06.04 - nextPrime, and open the project 
nextPrime.xcode. Run the project. You should see 
something like the console window shown in Figure 
6.6. As you can see, the next prime number after 9 
is (drum roll, please...) 23. Here’s how the program 
works.
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Figure 6.6 Running nextPrime.

Stepping Through the Source Code
In addition to our #include of <stdio.h> and 
<c.h> (the latter to include the definition of true 
and false), we’ve added a third #include to our 
stable. The new #include, <math.h>, gives us 
access to a series of math functions, most notably the 
function sqrt(). sqrt() takes a single parameter 
and returns the square root of that parameter. You’ll 
see how this works in a minute.

#include <stdio.h>
#include <math.h>
#include <c.h>

int main (int argc, const char * argv[])
{

We’re going to need a boatload of variables. They’re 
all defined as ints:

 int  startingPoint, candidate, last, i;
 int  isPrime;

startingPoint is the number we want to 
start off with. We’ll find the next prime after 
startingPoint. candidate is the current 
candidate we are considering. Is candidate 
the lowest prime number greater than 
startingPoint? By the time we are done, it will 
be!

startingPoint = 19;

Since 2 is the lowest prime number, if 
startingPoint is less than 2, we know that the 
next prime is 2. By setting candidate to 2, our 
work is done.

    if ( startingPoint < 2 )
    {
        candidate = 2;
    }

If startingPoint is 2, the next prime is 3 and 
we’ll set candidate accordingly.
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    else if ( startingPoint == 2 )
    {
        candidate = 3;
    }

If we got this far, we know that startingPoint 
is greater than 2. Since 2 is the only even prime 
number, and since we’ve already checked for 
startingPoint being equal to 2, we can now 
limit our search to odd numbers only. We’ll start 
candidate at startingPoint, then make sure 
that candidate is odd. If not, we’ll decrement 
candidate. Why decrement instead of increment? 
If you peek ahead a few lines, you’ll see we’re about 
to enter a do loop, and that we bump candidate 
to the next odd number at the top of the loop. By 
decrementing candidate now, we’re preparing 
for the bump at the top of the loop, which will take 
candidate to the next odd number greater than 
startingPoint. 

    else
    {
        candidate = startingPoint;

        if (candidate % 2 == 0)
            candidate--;

This loop will continue stepping through consecutive 
odd numbers until we find a prime number. We’ll 
start isPrime off as true, then check the current 
candidate to see if we can find a factor. If we do 

find a factor, we’ll set isPrime to false, forcing us 
to repeat the loop.

        do
        {
            isPrime = true;
            candidate += 2;

Now we’ll check to see if candidate is prime. This 
means verifying that candidate has no factors 
other than  and candidate. To do this, we’ll 
check the numbers from 3 to the square root of 
candidate to see if any of them divide evenly into 
candidate. If not, we know we’ve got ourselves a 
prime!

            last = sqrt( candidate );
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So why don’t we check from 2 up to candidate 
- 1? Why start with 3? Since candidate will never 
be even, we know that 2 will never be a factor. For the 
same reason, we know that no even number will ever 
be a factor.

Why stop at the square root of candidate? Good 
question! To help understand this approach, consider 
the factors of 12, other than 1 and 12. They are 2, 3, 4, 
and 6. The square root of 12 is approximately 3.46. 
Notice how this fits nicely in the middle of the list of 
factors. Each of the factors less than the square root 
will have a matching factor greater than the square 
root. In this case, 2 matches with 6 (2*6=12) and 3 
matches with 4 (3*4=12). This will always be true. If we 
don’t find a factor by the time we hit the square root, 
there won’t be a factor, and the candidate is prime.

Take a look at the top of the for loop. We start i at 
3. Each time we hit the top of the loop (including the 
first time through the loop) we’ll check to make sure 
we haven’t passed the square root of candidate, 
and that isPrime is still true. If isPrime is 
false, we can stop searching for a factor, since 
we’ve just found one! Finally, each time we complete 
the loop, we bump i to the next odd number.

 for ( i = 3; (i <= last) && isPrime; i += 2 )
 {

Each time through the loop, we’ll check to see if i 
divides evenly into candidate. If so, we know it is 

a factor and we can set isPrime to false.

        if ( (candidate % i) == 0 )
           isPrime = false;
      }
   } while ( ! isPrime );
 }

Once we drop out of the do loop, we use printf() to 
print both the starting point and the first prime number 
greater than the starting point.

 printf( “The next prime after %d is %d.
  Happy?\n”, startingPoint, candidate );
 return 0;
}

If you are interested in prime numbers, play around 
with this program. See if you can modify the code 
to print all the prime numbers from  to 00. How 
about the first 00 prime numbers? 
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What’s Next?
Congratulations! You’ve made it through some tough 
concepts. You’ve learned about the C statements 
that allow you to control your program’s flow. You’ve 
learned about C expressions and the concept of 
true and false. You’ve also learned about the 
logical operators based on the values true and 
false. You’ve learned about the if, if-else, 
for, while, do, switch, and break statements. 
In short, you’ve learned a lot!

Our next chapter introduces the concept of pointers.

A pointer to a variable is really the address of the 
variable in memory. If you pass the value of a variable 
to a function, the function can make use of the 
variable’s value, but can’t change the variable’s value. 
If you pass the address of the variable to the function, 
the function can also change the value of the variable. 
Chapter 7 will tell you why.

Chapter 7 will also discuss function parameters in 
detail. As usual, plenty of code fragments and sample 
applications will be presented to keep you busy. See 
you there.
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Exercises

) What’s wrong with each of the following code 
fragments?

 a. if i
   i++;

 b. for ( i=0; i<20; i++ )
   i--;

 c. while ( )
   i++;

 d. do ( i++ )
   until ( i == 20 );

 e. switch ( i )
  {
   case “hello”:
   case “goodbye”:
    printf( “Greetings.” );
    break;
   case default:
    printf( “Boring.” );
 }

 f. if  ( i < 20 )
   if  ( i == 20 )
    printf( “Lonely...” );

 g. while ( done = TRUE )
   done = ! done;

 h. for ( i=0; i<20; i*20 )
   printf( “Modification...” );

2) Modify nextPrime.c to compute the prime 
numbers from  to 00.

3) Modify nextPrime.c to compute the first 00 
prime numbers.
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ou’ve come a long way. You’ve mastered variable 
basics, operators, and statements. You’re about 
to add some powerful, new concepts to your 
programming toolbox.

For starters, we’ll introduce the concept of pointers, 
also known as variable addresses. From now on, 
you’ll use pointers in almost every C program you 
write. Pointers allow you to implement complex 
data structures, opening up a world of programming 
possibilities. 

What is a Pointer?
In programming, pointers are references to other 
things. When someone calls your name to get your 
attention, they’re using your name as a pointer. Your 
name is one way people refer to you.

Your name and address can combine to serve as 
a pointer, telling the mail carrier where to deliver 
the new Sears catalog. Your address distinguishes 
your house from all the other houses in your 
neighborhood and your name distinguishes you from 
the rest of the people living in your house. 

When you declare a variable in C, memory is allocated 
to the variable. This memory has an address. C pointers 
are special variables, specifically designed to hold one 
of these addresses. Later in the chapter, you’ll learn how 
to create a pointer, how to make it point to a specific 
variable, and how to use the pointer to change the 
variable’s value.

Why Use Pointers?
Pointers can be extremely useful, allowing you to 
access your data in ways that ordinary variables just 
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don’t allow. Here’s a real-world example of “pointer 
flexibility.”

When you go to the library in search of a specific 
title, chances are you start your search in a card 
catalog. Card catalogs contain thousands of index 
cards, one for every book in the library. Each index 
card contains information about a specific book, 
including such information as the author’s name, the 
book’s title, and the copyright date.

Most libraries have three card catalogs. Each lists all 
the books, sorted alphabetically by subject, author, 
or by title. In the subject card catalog, a book can be 
listed more than once. For example, a book about 
Thomas Jefferson might be listed under “Presidents, 
U.S.,” “Architects,” or even under “Inventors” 
(Jefferson was quite an inventor).

Figure 7. shows a catalog card for Albert Einstein’s 
famous book on relativity, called The Meaning of 
Relativity. The card was listed in the subject catalog 
under the subject “RELATIVITY (PHYSICS).” Take 
a minute to look the card over. Pay special attention 
to the catalog information located on the left side of 
the card. The catalog number for this book is 530.. 
This number tells you exactly where to find the book 
among all the other books on the shelves. The books 
are ordered numerically, so you’ll find this book in 
the 500 shelves, between 530 and 53.

Catalog
Information

530.1
E35mg
1950

162 p.

I. Relativity (Physics)    I. Title

Einstein, Albert, 1879-1955
     The Meaning of Relativity; 3rd ed.
rev. including the generalized theory
of gravitation. Princeton Univ. Press,
c1950.

RELATIVITY (PHYSICS)

Figure 7. Catalog card for a rather famous book. Note 
the catalog information on the left side of the card.

In this example, the library bookshelves are like your 
computer’s memory, with the books acting as data. 
The catalog number is the address of your data (a 
book) in memory (on the shelf ).

As you might have guessed, the catalog number acts 
as a pointer. The card catalogs use these pointers 
to rearrange all the books in the library, without 
moving a single book. Think about it. In the subject 
card catalog, all the books are arranged by subject. 
Physically, the book arrangements have nothing to 
do with subject. Physically, the books are arranged 
numerically, by catalog number. By adding a layer of 
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pointers between you and the books, the librarians 
achieve an extra layer of flexibility.

In the same way, the author and title card catalogs 
use a layer of pointers to arrange all the books by 
author and by title. By using pointers, all the books 
in the library are arranged four different ways 
without ever leaving the shelves. The books are 
arranged physically (sorted by catalog number) and 
logically (sorted in one catalog by author, in another 
by subject, and in another by title). Without the 
support of a layer of pointers, these logical book 
arrangements would be impossible.

Adding a layer of pointers is also known as “adding 
a level of indirection.” The number of levels of 
indirection is the number of pointers you have to use 
to get to your library book (or to your data).

Checking Out of the Library
So far, we’ve talked about pointers in terms of library 
catalog numbers. The use of pointers in your C 
programs is not much different from this model. 
Each card catalog number points out the location 
of a book on the library shelf. In the same way, each 
pointer in your program will point out the location of 
a piece of data in computer memory.

If you wrote a program to keep track of your 
compact-disc collection, you might maintain a list of 
pointers, each one of which might point to a block 

of data that describes a single CD. Each block of data 
might contain such info as the name of the artist, the 
name of the album, the year of release, and a category 
(jazz, rock, blues). If you got more ambitious, you 
could create several pointer lists. One list might sort 
your CDs alphabetically by artist name. Another 
might sort them chronologically by year of release. 
Yet another list might sort your CDs by musical 
category. You get the picture.

There’s a lot you can do with pointers. By mastering 
the techniques presented in these next few chapters, 
you’ll be able to create programs that take full 
advantage of pointers.

Our goal for this chapter is to master pointer basics. 
We’ll talk about C pointers and C pointer operations. 
You’ll learn how to create a pointer and how to make 
the pointer point to a variable. You’ll also learn how 
to use a pointer to change the value of the variable 
the pointer points to.



109

Chapter 7:  
Pointers and
Parameters

Pointer Basics
Pointers are variable addresses. Instead of an address 
such as:

1313 Mockingbird Lane
Raven Heights, California  90263

a variable’s address refers to a memory location 
within your computer. As we discussed in Chapter 
3, your computer’s memory, also known as random 
access memory, or RAM, consists of a sequence of 
bytes. One megabyte of RAM has exactly 220 (or 
,048,576) bytes of memory.  Eight megabytes of 
RAM has exactly 8 x 220 = 223 = 8,388,608 bytes of 
memory. One gigabyte of RAM has exactly 230 bytes 
= ,024 megabytes = ,073,74,824 bytes of memory. 
Whew!

Every one of those bytes has its own unique address. 
Computer addresses typically start with 0 and 
continue up, one at a time, until they reach the 
highest address. The first byte has an address of 0, 
the next byte has an address of , and so on. Figure 
7.2 shows the addressing scheme for a computer with 
a gigabyte of RAM. A gigabyte is ,024 megabytes. 
Notice that the addresses run from 0 (the lowest 
address) all the way up to ,073,74,823 (the highest 
address). The same scheme would hold true for ten 
gigabytes, or even one terabyte (,024 gigabytes).

1,073,741,823

2
1
0

Figure 7.2 A gigabyte worth of bytes.

Variable Addresses
When you run a program, one of the first things the 
computer does is allocate memory for your program’s 
variables. When you declare an int in your code, 
like this:

int myVar;

the compiler reserves memory for the exclusive use 
of myVar.

As mentioned earlier in the book, the amount of 
memory allocated for an int depends on your 
development environment. Xcode defaults to using 
4-byte ints.
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Each of myVar’s bytes has a specific address. Figure 
7.3 shows a one gigabyte chunk of memory with 4 
bytes allocated to the variable myVar. In this picture, 
the 4 bytes allocated to myVar have the addresses 
836, 837, 838, and 839.

1,073,741,823
1,073,741,822

1
0

837
836

839
838

Figure 7.3 Four bytes allocated for the int named 
myVar.

By convention, a variable’s address is said to be the 
address of its first byte (the first byte is the byte with 
the lowest-numbered address). If a variable uses 
memory locations 836 through 839 (as myVar does), 
its address is 836 and its length is 4 bytes. 

When more than 1 byte is allocated to a variable, the 
bytes will always be consecutive (next to each other 
in memory). You will never see an int whose byte 
addresses are 508, 509, 510, and 695. A variable’s bytes 
are like family—they stick together!

As we showed earlier, a variable’s address is a lot like 
the catalog number on a library catalog card. Both 
act as pointers, one to a book on the library shelf, and 
the other to a variable. From now on, when we use 
the term pointer with respect to a variable, we are 
referring to the variable’s address.

Now that you understand what a pointer is, your 
next goal is to learn how to use pointers in your 
programs. The next few sections will teach you some 
valuable pointer-programming skills. You’ll learn 
how to create a pointer to a variable. You’ll also 
learn how to use that pointer to access the variable it 
points to.

The C language provides you with a few key tools to 
help you. These tools come in the form of two special 
operators: & and *.

The & Operator
The & operator (also called the address-of operator) 
pairs with a variable name to produce the variable’s 
address. The expression:

&myVar
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refers to myVar’s address in memory. If myVar 
owned memory locations 836 through 839 (as in 
Figure 7.3), the expression:

&myVar

would have a value of 836. The expression &myVar is 
a pointer to the variable myVar.

As you start programming with pointers, you’ll 
find yourself using the & operator frequently. 
An expression like &myVar is a common way to 
represent a pointer. Another way to represent a 
pointer is with a pointer variable. A pointer variable 
is a variable specifically designed to hold the address 
of another variable.

Declaring a Pointer Variable
C supports a special notation for declaring pointer 
variables. This line:

int *myPointer;

declares a variable called myPointer. Notice that 
the * is not part of the variable’s name. Instead, it 
tells the compiler that the associated variable is a 
pointer, specifically designed to hold the address 
of an int. If there were a data type called bluto, 
you could declare a variable designed to point to a 
bluto like this:

bluto *blutoPointer;

For now, we’ll limit ourselves to pointers that point to 
ints. Look at this code:

int *myPointer, myVar;

myPointer = &myVar;

The assignment statement puts myVar’s address in 
the variable myPointer. If myVar’s address is 836, 
this code will leave myPointer with a value of 836. 
Note that this code has absolutely no effect on the 
value of myVar.

There will be times in your coding when you have a 
pointer to a variable, but do not have access to the 
variable itself. This happens a lot. You can actually 
use the pointer to manipulate the value of the 
variable it points to. Observe:

int *myPointer, myVar;

myPointer = &myVar;
*myPointer = 27;

As before, the first assignment statement places 
myVar’s address in the variable myPointer. The 
second assignment introduces the * operator. The * 



112

Chapter 7:  
Pointers and
Parameters

operator (called the star operator) converts a pointer 
variable to the item the pointer points to.

The * that appears in the declaration statement isn’t 
really an operator. It’s only there to designate the 
variable myPointer as a pointer.

If myPointer points to myVar, as is the case in 
our example, *myPointer refers to the variable 
myVar. In this case, the line:

*myPointer = 27;

is the same as saying:

myVar = 27;

Confused? These memory pictures should help. 
Figure 7.4 joins our program in progress, just 
after the variables myVar and myPointer were 
declared:

int *myPointer, myVar;

1,073,741,823
1,073,741,822

32,105
32,104

32,107
32,106

int *myPointer;

int myVar;

1
0

837
836

839
838

Figure 7.4 Memory allocated for myVar and 
myPointer.

Notice that 4 bytes were allocated for the variable 
myVar and an additional 4 bytes were allocated for 
myPointer. Why? Because myVar is an int and 
myPointer is a pointer, designed to hold a 4-byte 
address.

Why a 4-byte address? Good question! 4 bytes is 
equal to 32 bits. Since memory addresses start at 0 
and can never be negative, a 4-byte memory address 
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can range from 0 up to 232 -  = 4,294,967,295. 
That means that a 32-bit computer can address 
a maximum of 4 gigabytes (4096 megabytes) of 
memory.

While 4 gigs of memory might seem more than 
adequate for most folks, there are already a number 
of applications that require more RAM than this. 
After all, it was just a few years ago that 32 megs of 
RAM was the standard. Soon, we will look back and 
wonder just how we managed to live with that pesky 
4 gig limit!

So how do we address more than 4 gigabytes in a 32-
bit computer? The short answer is, we don’t. When 
Apple released the G5 back in 2003, they introduced 
their first 64-bit computer. Instead of a 4-byte 
address, the G5 supports an 8-byte address. An 8-
byte address can hold values from 0 to 264 - . That is 
one giant number.

The point here is to be aware that the size of an 
address can change and the number of bytes used to 
represent an int can change. 

Older computers (like the Apple IIe, for example) 
represented an address using 2 bytes (16-bits) of 
memory, yielding a range of addresses from 0 to 216 - 1 
= 65,535. Imagine having to fit your operating system, 
as well as all your applications in a mere 64K of RAM 
(1K = 1024 bytes).

When the Mac first appeared, it came with 128K of 
RAM and used 24-bit memory addresses, yielding a 
range of addresses from 0 to 224 - 1 = 16,777,215 (also 
known as 16 megabytes). In those days, no one could 
imagine a computer that actually included 16 entire 
megabytes of memory! 

Of course, these days we are much smarter. We 
absolutely know for a fact that we’ll never exceed the 
need for 64-bit addresses. I mean, there’s no way that 
a computer could ever make use of 4 gigabytes of 
RAM, right? Hmmm... Better not count on that. In fact, 
if you are a betting person, I’d wager that someday 
we’ll see 16-byte addresses. Really!

Once memory is allocated for myVar and 
myPointer, we move on to the statement:

myPointer = &myVar;

The 4-byte address of the variable myVar is written 
to the 4 bytes allocated to myPointer. In our 
example, myVar’s address is 836. Figure 7.5 shows 
the value 836 stored in myPointer’s 4 bytes. Now 
myPointer is said to “point-to” myVar.
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1,073,741,823
1,073,741,822

32,105
32,104

32,107
32,106

int *myPointer;

int myVar;

1
0

837
836

839
838

8
3
6

Figure 7.5 The address of myVar is assigned to 
myPointer.

OK, we’re almost there. The next line of our example 
writes the value 27 to the location pointed to by 
myPointer.

*myPointer = 27;

Without the * operator, the computer would 

place the value 27 in the memory allocated to 
myPointer. The * operator dereferences 
myPointer. Dereferencing a pointer turns the 
pointer into the variable it points to. Figure 7.6 shows 
the end results.

1,073,741,823
1,073,741,822

32,105
32,104

32,107
32,106

int *myPointer;

int myVar;

1
0

837
836

839
838

8
3
6

2
7

Figure 7.6 Finally, the value 27 is assigned to 
*myPointer.
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If the concept of pointers seems alien to you, don’t 
worry. You are not alone. Programming with pointers 
is one of the most difficult topics you’ll ever take on. 
Just keep reading, and make sure you follow each of 
the examples line by line. By the end of the chapter, 
you’ll be a pointer expert!

Function Parameters
One of the most important uses of pointers (and 
perhaps the easiest to understand) lies in the 
implementation of function parameters. In this 
section, we’ll focus on parameters and, at the same 
time, have a chance to check out pointers in action.

What Are Function Parameters?
A function parameter is your chance to share a 
variable between a calling function and the called 
function.

Suppose you wanted to write a function called 
AddTwo() that took two numbers, added them 
together, and returned the sum of the two numbers. 
How would you get the two original numbers 
into AddTwo()? How would you get the sum of 
the two numbers back to the function that called 
AddTwo()?

As you might have guessed, the answer to both 
questions lies in the use of parameters. Before you 
can learn how to use parameters, however, you’ll 
have to first understand the concept of scope.

Variable Scope
In C, every variable is said to have a scope, or range. 
A variable’s scope defines where in the program you 
have access to a variable. In other words, if a variable 
is declared inside one function, can another function 
refer to that same variable?

C defines variable scope as follows:
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4 A variable declared inside a function is local to 
that function and may only be referenced inside 
that function.

This statement is important. It means you can’t 
declare a variable inside one function, then refer to 
that same value inside another function. Here’s an 
example that will never compile:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int numDots;

 numDots = 500;

 DrawDots();

 return 0;
}

void DrawDots( void )
{
 int i;

 for ( i = 1; i <= numDots; i++ )
  printf( “.” );
}

The error in this code occurs when the function 
DrawDots() tries to reference the variable 
numDots. According to the rules of scope, 
DrawDots() doesn’t even know about the variable 

numDots. If you tried to compile this program the 
compiler would complain that DrawDots() tried to 
use the variable numDots without declaring it.

The problem you are faced with is getting the value 
of numDots to the function DrawDots() so 
DrawDots() knows how many “dots” to draw. The 
answer to this problem is function parameters.

DrawDots() is another example of the value of 
writing functions. We’ve taken the code needed to 
perform a specific function (in this case, draw some 
dots) and embedded it in a function. Now, instead of 
having to duplicate the code inside DrawDots() 
every time we want to draw some dots in our 
program, all we’d need is a single line of code: a call to 
the function DrawDots().

How Function Parameters Work
Function parameters are just like variables. Instead 
of being declared at the beginning of a function, 
function parameters are declared between the 
parentheses on the function’s title line, like this:

void DrawDots( int numDots )
{
 /* function’s body goes here */
}

When you call a function, you just match up the 
parameters, making sure you pass the function what 
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it expects. To call the version of DrawDots() we 
just defined, make sure you place an int between 
the parentheses. The call to DrawDots() inside 
main():

int main( void )
{
 DrawDots( 30 );

 return 0;
}

passes the value 30 into the function DrawDots(). 
When DrawDots() starts executing, it sets its 
parameter to the passed-in value. In this case, 
DrawDots() has one parameter, an int named 
numDots. When the call:

DrawDots( 30 );

executes, the function DrawDots() sets its 
parameter, numDots, to a value of 30. To make 
things a little clearer, here’s a revised version of our 
example:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 DrawDots( 30 );

 return 0;
}

void DrawDots( int numDots )
{
 int i;

 for ( i = 1; i <= numDots; i++ )
  printf( “.” );
}

This version of main() calls DrawDots(), 
passing as a parameter the constant 30. 
DrawDots() receives the value 30 in its int 
parameter, numDots. This means that the function 
DrawDots() starts execution with a variable 
named numDots having a value of 30.

Inside DrawDots(), the for loop behaves as you 
might expect, drawing 30 periods in the console 
window. Figure 7.7 shows a picture of this program 
in action. You can run this example yourself. The 
project file, drawDots.xcode, is located in the 
Learn C Projects folder in a subfolder named 07.0 
- drawDots.
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Figure 7.7  drawDots in action.

Parameters are Temporary
When you pass a value from a calling function to a 
called function, you are creating a temporary variable 
inside the called function. Once the called function 
exits (returns to the calling function), that variable 
ceases to exist.

In our example, we passed a value of 30 into 
DrawDots() as a parameter. The value came to rest 
in the parameter variable named numDots. Once 
DrawDots() exited, numDots ceased to exist.

Remember, a variable declared inside a function can 
only be referenced by that function.

It is perfectly acceptable for two functions to use 
the same variable names for completely different 
purposes. It’s fairly standard, for example, to use 
a variable name like i as a counter in a for loop. 
What happens when, in the middle of just such a 
for loop, you call a function that also uses a variable 
named i? Here’s an example:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int i;

 for ( i=1; i<=10; i++ )
 {
  DrawDots( 30 );
  printf( “\n” );
 }

 return 0;
}

void DrawDots( int numDots )
{
 int i;

 for ( i = 1; i <= numDots; i++ )
  printf( “.” );
}

This code prints a series of 0 rows of dots, with 30 
dots in each row. After each call to DrawDots(), a 
carriage return (“\n”) is printed, moving the cursor 
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in position to begin the next row of dots.

Notice that main() and DrawDots() each feature 
a variable named i. main() uses the variable i as a 
counter, tracking the number of rows of dots printed. 
DrawDots() also uses i as a counter, tracking 
the number of dots in the row it is printing. Won’t 
DrawDots()’s copy of i mess up main()’s copy of 
i? No!

When main() starts executing, memory gets 
allocated for its copy of i. When main() calls 
DrawDots(), additional memory gets allocated for 
DrawDots()’ copy of i. When DrawDots() exits, 
the memory for its copy of i is deallocated, freed 
up so it can be used again for some other variable. A 
variable declared within a specific function is known 
as a local variable. DrawDots() has a single local 
variable, the variable i. 

What Does All This Have to Do with 
Pointers?
OK. Now we’re getting to the crux of the whole 
matter. What do parameters have to do with 
pointers? To answer this question, you have to 
understand the two different methods of parameter 
passing.

Parameters are passed from function to function 
either by value or by address. Passing a parameter by 
value passes only the value of a variable or literal on 
to the called function. Take a look at this code:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int numDots;

 numDots = 30;

 DrawDots( numDots );

 return 0;
}

void DrawDots( int numDots )
{
 int i;

 for ( i = 1; i <= numDots; i++ )
  printf( “.” );
}

Here’s what happens when main() calls 
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DrawDots(). On the calling side, the expression 
passed as a parameter to DrawDots() is resolved 
to a single value. In this case, the expression is simply 
the variable numDots. The value of the expression is 
the value of numDots, which is 30.

On the receiving side, when DrawDots() gets 
called, memory is allocated for its parameters as well 
as for its local variables. This means that memory 
is allocated for DrawDots()’s copy of numDots, 
as well as for its copy of i. The value passed in to 
DrawDots() from main() (in this case, 30) is 
copied into the memory allocated to DrawDots()’s 
copy of numDots.

It is important to understand that whatever main() 
passes as a parameter to DrawDots() is copied into 
DrawDots()’s local copy of the parameter. Think 
of DrawDots()’s copy of numDots as just another 
local variable that will disappear when DrawDots() 
exits. DrawDots() can do whatever it likes to its 
copy of the parameter. Since it is just a local copy, any 
changes will have absolutely no affect on main()’s 
copy of the parameter.

Since passing parameters by value is a one-way 
operation, there’s no way to get data back from 
the called function. Why would you ever want to? 
Several reasons. You might write a function that 
takes an employee number as a parameter. You might 
want that function to return the employee’s salary in 
another parameter. How about a function that turns 
yards into meters? You could pass the number of 

yards as a value parameter, but how would you get 
back the number of meters?

Passing a parameter by address (instead of by 
value) solves this problem. If you pass the address 
of a variable, the receiving function can use the * 
operator to change the value of the original variable.

Here’s an example:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int square;

 SquareIt( 5, &square );

 printf( “5 squared is %d.\n”, square );

 return 0;
}

void SquareIt( int  number, int *squarePtr )
{
 *squarePtr = number * number;
}

In this example, main() calls the function 
SquareIt(). SquareIt() takes two parameters. 
As in our last example, both parameters are declared 
between the parentheses on the function’s title 
line. Notice that we used a comma to separate the 
parameter declarations.
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The first of SquareIt()’s two parameters is an 
int. The second parameter is a pointer to an int. 
SquareIt() squares the value passed in the first 
parameter, using the pointer in the second parameter 
to return the squared value.

If it’s been ten or more years since your last math 
class, squaring a number is the same as multiplying 
the number by itself. The square of 4 is 16 and the 
square of 5 is 25.

Here’s main()’s call of SquareIt():

SquareIt( 5, &square );

Here’s the function prototype of SquareIt():

void SquareIt( int  number, int *squarePtr );

When SquareIt() gets called, memory is 
allocated for an int (number) and for a pointer to 
an int (squarePtr).

Once the local memory is allocated, the value 5 is 
copied into the local parameter number, and the 
address of square is copied into squarePtr 
(Remember, the & operator produces the address of a 
variable).

Inside the function SquareIt(), any reference to:

*squarePtr

is just like a reference to square. The assignment 
statement:

*squarePtr = number * number;

assigns the value 25 (since number has a value of 5) 
to the variable pointed to by squarePtr. This has 
the effect of assigning the value 25 to square. When 
SquareIt() returns control to main(), the value 
of square has been changed, as evidenced by the 
screen shot in Figure 7.8. If you’d like to give this 
code a try, you’ll find it in the Learn C Projects folder, 
inside the 07.02 - squareIt subfolder.
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Figure 7.8  squareIt in action.

We’ll see lots more pointer-wielding examples 
throughout the rest of the book.

Global Variables and Function 
Returns
The combination of pointers and parameters gives 
us one way to share variables between different 
functions. This section demonstrates two more 
techniques for doing the same.

Global variables are variables that are accessible from 
inside every function in your program. By declaring 
a global variable, two separate functions can access 
the same variable without passing parameters. We’ll 
show you how to declare a global variable, then talk 
about when and when not to use global variables in 
your programs.

Another topic we’ll discuss later in the chapter is 
a property common to all functions. All functions 
written in C have the ability to return a value to the 
function that calls them. You set this return value 
inside the function itself. You can use a function’s 
return value in place of a parameter, use it to pass 
additional information to the calling function, or not 
use it at all. We’ll show you how to add a return value 
to your functions.

Global Variables
Earlier in the chapter, you learned how to use 
parameters to share variables between two functions. 
Passing parameters between functions is great. You 
can call a function, pass it some data to work on, and 
when the function’s done, it can pass you back the 
results.
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Global variables provide an alternative to parameters. 
Global variables are just like regular variables, with 
one exception. Global variables are immune to C’s 
scope rules. They can be referenced inside each 
of your program’s functions. One function might 
initialize the global variable, another might change its 
value, and another function might print the value of 
the global variable in the console window.

As you design your programs, you’ll have to make 
some basic decisions about data sharing between 
functions. If you’ll be sharing a variable among a 
number of functions, you might want to consider 
making the variable a global. Globals are especially 
useful when you want to share a variable between 
two functions that are several calls apart.

Several calls apart? At times, you’ll find yourself 
passing a parameter to a function, not because 
that function needs the parameter, but because 
the function calls another function that needs the 
parameter. Look at this code:

#include <stdio.h>

void PassAlong( int myVar );
void PrintMyVar( int myVar );

int main( void )
{
 int myVar;

 myVar = 10;

 PassAlong( myVar );

 return 0;
}

void PassAlong( int myVar )
{
 PrintMyVar( myVar );
}

void PrintMyVar( int myVar )
{
 printf( “myVar = %d”, myVar );
}

Notice that main() passes myVar to the 
function PassAlong(). PassAlong() doesn’t 
actually make use of myVar. Instead, it just passes 
myVar along to the function PrintMyVar(). 
PrintMyVar() prints myVar, then returns.

If myVar were a global, you could have avoided some 
parameter passing. main() and PrintMyVar() 
could have shared myVar without the use of 
parameters. When should you use parameters? 
When should you use globals? There’s no easy 
answer. As you write more code, you’ll develop 
your own coding style and, with it, your own sense 
of when to use globals versus parameters. For the 
moment, let’s take a look at the proper way to add 
globals to your programs.
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Adding Globals to Your Programs
Adding globals to your programs is easy. Just declare 
a variable at the beginning of your source code before 
the start of any of your functions. Here’s the example 
we showed you earlier, using globals in place of 
parameters:

#include <stdio.h>

void PassAlong( void );
void PrintMyVar( void );

int gMyVar;

int main (int argc, const char * argv[])
{
 gMyVar = 10;

 PassAlong();

 return 0;
}

void PassAlong( void )
{
 PrintMyVar();
}

void PrintMyVar( void )
{
 printf( “gMyVar = %d”, gMyVar );
}

This example starts with a variable declaration, right 
at the top of the program. Because gMyVar was 

declared at the top of the program, gMyVar becomes 
a global variable, accessible to each of the program’s 
functions. Notice that none of the functions in 
this version use parameters. As a reminder, when 
a function is declared without parameters, use the 
keyword void in place of a parameter list.

Did you notice that letter g at the beginning of the 
global’s name? Many C programmers start each of 
their global variables with the letter g (for global). 
Doing this will distinguish your local variables from 
your global variables and will make your code much 
easier to read.

When to Use Globals
In general, you should try to minimize your use 
of globals. On one hand, global variables make 
programming easier, because you can access a global 
anywhere. With parameters, you have to pass the 
parameter from function to function, until it gets to 
where it will be used.

On the other hand, globals are expensive, memory-
wise. Since the memory available to your program 
is finite, you should try to be memory conscious 
whenever possible. What makes global variables 
expensive where memory is concerned? Whenever 
a function is called, memory for the function’s 
variables is allocated on a temporary basis. When the 
function exits, the memory allocated to the function 
is freed up (put back into the pool of available 
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memory). Global variables, on the other hand, are 
around for the life of your program. Memory for 
each global is allocated when the program first starts 
running and isn’t freed up until the program exits.

Try to minimize your use of globals, but don’t be a 
miser. If using a global will make your life easier, go 
ahead and use it.

Function Returns
Before we get to our source code examples, there’s 
one more subject to cover. In addition to passing a 
parameter and using a global variable, there’s one 
more way to share data between two functions. Every 
function returns a value to the function that called it. 
You can use this return value to pass data back from 
a called function.

So far, all of our examples have ignored function 
return values. The return value only comes into play 
when you call a function in an expression, like this:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int sum;

 sum = AddTheseNumbers( 5, 6 );

 printf( “The sum is %d.”, sum );

 return 0;
}

int AddTheseNumbers( int num1, int num2 )
{
 return( num1 + num2 );
}

There are a few things worth noting in this 
example. First, take a look at the function specifier 
for AddTheseNumbers(). So far in this 
book, every single function other than main() 
has been declared using the keyword void. 
AddTheseNumbers(), like main(), starts with 
the keyword int. This keyword tells you the type 
returned by this function. A function declared with 
the void keyword doesn’t return a value. A function 
declared with the int keyword returns a value of 
type int.

A function returns a value by using the return 
keyword, followed by an expression that represents 
the value you want returned. For example, take a look 
at this line of code from AddTheseNumbers():

 return( num1 + num2 );

This line of code adds the two variables num1 and 
num2 together, then returns the sum. To understand 
what that means, take a look at this line of code from 
main() that calls AddTheseNumbers():

 sum = AddTheseNumbers( 5, 6 );
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This line of code first calls AddTheseNumbers(), 
passing in values of 5 and 6 as parameters. 
AddTheseNumbers() adds these numbers 
together and returns the value , which is then 
assigned to the variable sum.

When you use a function inside an expression, the 
computer makes the function call, then substitutes 
the function’s return value for the function when it 
evaluates the rest of the expression. 

There are several ways to use return. To 
immediately exit a function, without establishing a 
return value, use the statement:

return;

or

return();

The parentheses in a return statement are optional. 
You’d use the plain return, without an expression, 
to return from a function of type void. You might 
use this immediate return in case of an error, like 
this:

if ( OutOfMemory() )
 return;

What you’ll want to remember about this form of 
return is that it does not establish the return value 
of the function. This works fine if your function is 
declared void:

void MyVoidFunction( int myParam );

but won’t cut it if your function is declared to return 
a value:

int AddTheseNumbers( int num1, int num2 )

If you forget to specify a return value, some compilers 
will say nothing, some will print warnings, and others 
will report errors.

AddTheseNumbers() is declared to return a value 
of type int. Here are two different versions of the 
AddTheseNumbers() return statement:

return( num1 + num2 );

and

return num1 + num2;

Notice that the second version did not include any 
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parentheses. Since return is a keyword and not a 
function call, either of these forms is fine.

You can find a version of this program on your hard 
drive. Look in the folder Learn C Projects, in the 
subfolder 07.03 - addThese. Figure 7.9 shows the 
output of this program.

Figure 7.9  addThese in action.

Danger! Avoid Uninitialized Return 
Values!
Before we leave the topic of function return values, 
there’s one pitfall worth mentioning. If you’re going 
to use a function in an expression, make sure the 
function provides a return value. For example, this 
code will produce unpredictable results:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int sum;

 sum = AddTheseNumbers( 5, 6 );

 printf( “The sum is %d.”, sum );

 return 0;
}

int AddTheseNumbers( int num1, int num2 )
{
 return; /* Yikes! We forgot to
    set the return value */
}

When AddTheseNumbers() returns, what will 
its value be? No one knows! When I ran the above 
example on my computer, Xcode reported a warning 
(as it should), then ran the program, generating a 
sum of 724. Unpredictable results! Don’t forget to 
set a return value if you intend to use a function in an 
expression.

To Return or Not to Return
Should you use a return value or a passed-by-address 
parameter? Which is correct? This is basically a 
question of style. Either solution will get the job 
done, so feel free to use whichever works best for 
you. Just remember that a function can have only one 
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return value but an unlimited number of parameters. 
If you need to get more than one piece of data 
back to the calling function, your best bet is to use 
parameters.

The function AddTheseNumbers() was a natural 
fit for the return statement. It took in a pair of 
numbers (the input parameters), and needed to 
return the sum of those numbers. Since it only 
needed to return a single value, the return 
statement worked perfectly.

Another nice thing about using the return 
statement, is that it frequently allows us to avoid 
declaring an extra variable. In addThese, we 
declared sum to receive the value returned by 
AddTheseNumbers(). Since all we did with sum 
was print its value, we could have accomplished the 
same thing with this version of main():

int main (int argc, const char * argv[])
{
 printf( “The sum is %d.”, AddTheseNumbers( 5, 
6 ) );

 return 0;
}

See the difference? We included the 
call to AddTheseNumbers() in the 
printf(), bypassing sum entirely. When 
AddTheseNumbers() returns its int, that value 
is passed on to printf().

More Sample Programs
Are you ready for some more code? The next few 
sample programs make use of pointers, function 
parameters, global variables, and function returns. 
Fire up your Mac, crank up your iPod, and break out 
the pizza. Let’s code!

listPrimes.xcode
Our next sample program is an updated version of 
Chapter 6’s prime number program, nextPrime, 
which found the next prime number following 
a specified number. The example we presented 
reported that the next prime number after 9 was 23.

This program, called listPrimes, uses a function 
named IsItPrime() and lists all the prime 
numbers between  and 50. Open up the project 
listPrimes.xcode. You’ll find it in the Learn C Projects 
folder, inside the subfolder named 07.04 - listPrimes. 
Run listPrimes, then compare your results with 
the console window shown in Figure 7.0.
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Figure 7.0 listPrimes in action.

Let’s take a look at the source code...

Stepping Through the Source Code
listPrimes.c consists of two functions: main() 
and IsItPrime(). IsItPrime() takes a single 
parameter, an int named candidate, which is 
passed by value. IsItPrime() returns a value of 
true if candidate is a prime number and a value 
of false otherwise.

listPrimes.c starts off with three #includes. 
stdio.h gives us access to the function prototype 
of printf(), c.h gives us the definitions of true 
and false, and math.h gives us access to the 
function prototype for sqrt().

#include <stdio.h>
#include <c.h>
#include <math.h>

Next comes the function prototype for 
IsItPrime(). The compiler will use this 
function prototype to make sure that all calls to 
IsItPrime() pass the right number of parameters 
(in this case, ) and that the parameters are of the 
correct type (in this case, a single int).

int IsItPrime( int candidate );

main() defines a single variable, an int named 
i. We’ll use i as a counter to step through the 
integers from  to 50. We’ll pass each number to 
IsItPrime() and, if the result is true, we’ll 
report the number as prime.

int main (int argc, const char * argv[])
{
 int i;
 
 for ( i = 1; i <= 50; i++ )
 {
  if ( IsItPrime( i ) )
   printf( “%d is a prime number.\n”, 
i );

 }
 
 return 0;
}
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As usual, main() ends with a return statement. 
By convention, returning a value of 0 tells the 
outside world that everything ran just honky-dory. 
If something goes wrong (if we ran out of memory 
perhaps) the same convention calls for us to return 
a negative number from main(). Some operating 
systems will make use of this return value, others 
won’t. It doesn’t cost you anything to follow the 
convention, so go ahead and follow it.

IsItPrime() first checks to see if the number 
passed in is less than 2. If so, IsItPrime() returns 
false, since 2 is the first prime number.

int IsItPrime( int candidate )
{
 int i, last;
 
 if ( candidate < 2 )
  return false;

If candidate has a value of 2 or greater, we’ll step 
through all the numbers between 2 and the square 
root of candidate looking for a factor. If this 
algorithm is new to you, go back to the previous 
chapter and check out the program nextPrime. 
If we find a factor, we know the number isn’t prime, 
and we’ll return false.

 else
 {

  last = sqrt( candidate );
  
  for ( i = 2; i <= last; i++ )
  {
   if ( (candidate % i) == 0 )
    return false;
  }
 }

If we get through the loop without finding a factor, 
we know candidate is prime, and we return 
true.

 return true;
}

If candidate is equal to 2, last will be equal 
to 1.414, which will get truncated to 1, since last 
is an int. If last is 1, the for loop won’t even 
get through 1 iteration and will fall through to the 
statement:

return true;

The same thing happens if candidate is 3. Since 
2 and 3 are both prime, this works just fine. On the 
other hand, this little example shows you how careful 
you have to be to check your code, to make sure it 
works in all cases.

Consider the function name IsItPrime(). In C, 
when you name a function in the form of a true or 
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false question, it is good form to return a value 
of true or false. The question this function 
answers is, “Is the candidate prime?” It is critical that 
IsItPrime() return true if the candidate was 
prime and false otherwise. When main() calls 
IsItPrime(), main() is asking the question, 
“Is the candidate prime?” In the case of the if 
statement:

if ( IsItPrime( i ) )
 printf( ... );

main() is saying, “If i is prime, do the printf().” 
Make sure your function return values make sense!

power.xcode
Our next program combines a global variable, a 
pointer parameter, and some value parameters. 
At the heart of the program is a function, called 
DoPower(), that takes three parameters. 
DoPower() takes a base and an exponent, raises 
the base to the exponent power, and returns the 
result in a parameter. Raising a base to an exponent 
power is the same as multiplying the base by itself, an 
exponent number of times.

For example, raising 2 to the fifth power (written as 
25) is the same as saying 2*2*2*2*2, which is equal 
to 32. In the expression 25, 2 is the base and 5 is the 
exponent. The function DoPower() takes a base 
and an exponent as parameters and raises the base 

to the exponent power. DoPower() uses a third 
parameter to return the result to the calling function.

The program also makes use of a global variable, 
an int named gPrintTraceInfo, which 
demonstrates one of the most important uses of a 
global variable. Every function in the program checks 
the value of the global gPrintTraceInfo. If 
gPrintTraceInfo is true, each function prints 
a message when the function is entered, and another 
message when the function exits. In this way, you can 
trace the execution of the program. By reading the 
printf()s, you can see when a function is entered 
and when it leaves.
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Most modern development environments feature a 
piece of software, called a debugger, that lets you 
trace the execution of your program, one line at a 
time. Xcode has an excellent debugger!

To give it a try, first click in the left-hand-column of 
your source code window, just to the left of a line of 
code, to create a new breakpoint (a place for the 
debugger to stop). Once the little breakpoint arrow 
appears, select Show Debugger from the Debug 
menu, then click the Build and Debug icon at the top 
of the debugger window. Click the Step Over and Step 
Into buttons to step through your program. To exit, 
either step all the way through the program, or click 
the stop sign icon.

Even if you have a debugger, there will be times when 
it is handy to stick a debugging printf() in your 
code. Whatever gets the job done.

If gPrintTraceInfo is set to true, the extra 
function-tracing information will be printed in the 
console window. If gPrintTraceInfo is set to 
false, the extra information will not be printed.

As you’ll see in a moment, by simply changing the 
value of a global, you can dramatically change the 
way your program runs.

Running power
You’ll find power.xcode in the Learn C Projects 
folder, in the 07.05 - power subfolder. Run power 
and compare your results with the console window 

shown in Figure 7.. This output was produced by 
three consecutive calls to the function DoPower(). 
The three calls calculated the result of the 
expressions 25, 34, and 53. Here’s how the program 
works.

Figure 7. power output, with gPrintTraceInfo 
set to false.

Stepping Through the Source Code
main.c starts with a pair of standard #includes 
and the function prototype for DoPower(). Notice 
that DoPower() is declared to be of type void, 
telling you that DoPower() doesn’t return a value. 
As you read through the code, think about how you 
might rewrite DoPower() to return its result using 
the return statement instead of via a parameter.
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#include <stdio.h>
#include <c.h>

void DoPower( int *resultPtr, int base, int 
exponent );

Next comes the declaration of our global, 
gPrintTraceInfo. Once again, notice that the 
global starts with a g.

int  gPrintTraceInfo;

main() starts off by setting gPrintTraceInfo 
to false. Next, we check to see if tracing is turned 
on. If so, we’ll print a message telling us we’ve 
entered main().

int main (int argc, const char * argv[])
{
 int power;
 
 gPrintTraceInfo = false;
 
 if ( gPrintTraceInfo )
  printf( “---> Starting main()...\n” );

C guarantees that it will initialize all global variables 
to zero. Since false is equivalent to zero, we 
could have avoided setting gPrintTraceInfo 
to false, but that would have been a mistake. 
Explicitly setting the global to a value makes the code 
easier to read and is the right thing to do!

Here are our three calls to DoPower(), each of 
which is followed by a printf() reporting our 
results. If DoPower() returned its results via 
a return statement, we could have eliminated 
the variable power, and embedded the call to 
DoPower() inside the printf() in power’s 
place.

 DoPower( &power, 2, 5 );
 printf( “2 to the 5th = %d.\n”, power );
 
 DoPower( &power, 3, 4 );
 printf( “3 to the 4th = %d.\n”, power );
 
 DoPower( &power, 5, 3 );
 printf( “5 to the 3rd = %d.\n”, power );

If tracing is turned on, we’ll print a message saying 
that we are leaving main().

 if ( gPrintTraceInfo )
  printf( “---> Leaving main()...\n” );

 return 0;
}
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The function DoPower() takes three parameters. 
resultPtr is a pointer to an int. We’ll use that 
pointer to pass back the function results. base and 
exponent are value parameters that represent 
the—guess what?—base and exponent.

void DoPower( int *resultPtr, int base, int 
exponent )

{
 int i;

Once again, check the value of gPrintTraceInfo. 
If it’s true, print a message telling us we’re at the 
beginning of DoPower(). Notice the tab character 
(represented by the characters \t) at the beginning 
of the printf() quoted string. You’ll see what this 
was for when we set gPrintTraceInfo to true.

 if ( gPrintTraceInfo )
  printf( “\t---> Starting DoPower()...\n” 
);

The following three lines calculate base raised to 
the exponent power, accumulating the results 
in the memory pointed to by resultPtr. When 
main() called DoPower(), it passed &power as 
its first parameter. This means that resultPtr 
contains the address of (points to) the variable 
power. Changing *resultPtr is exactly the same 
as changing power. When DoPower() returns 

to main(), the value of power will have been 
changed. power was passed by-address (also called 
by-reference), instead of by-value.

 *resultPtr = 1;
 for ( i = 1; i <= exponent; i++ )
  *resultPtr *= base;

Finally, if gPrintTraceInfo is true, print a 
message telling us we’re leaving DoPower().

 if ( gPrintTraceInfo )
  printf( “\t---> Leaving DoPower()...\n” 
);

}

Figure 7.2 shows the console window when power 
is run with gPrintTraceInfo set to true. See 
the trace information? Find the lines printed when 
you enter and exit DoPower(). The leading tab 
characters help distinguish these lines.
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Figure 7.2 power output, with gPrintTraceInfo 
set to true.

This tracing information was turned on and off by a 
single global variable. As you start writing your own 
programs, you’ll want to develop your own set of 
global variable tricks. 

What’s Next?
Wow! You really are becoming a C programmer. In 
this chapter alone, you covered pointers, function 
parameters (both by-value and by-address), global 
variables, and function return values.

You’re starting to develop a sense of just how 
powerful and sophisticated the C language really 
is. You’ve built an excellent foundation. Now you’re 
ready to take off.

The second half of our book (Volume 2) starts 
with the introduction of the concept of data types. 
Throughout the book, you’ve been working with 
a single data type, the int. Our next chapter will 
introduce the concept of arrays, strings, pointer 
arithmetic and typed function return values. Let’s go.
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Exercises

) Predict the result of each of the following code 
fragments:

a)
void AddOne( int *myVar );

int main (int argc, const char * argv[])
{
 int num, i;

 num = 5;

 for ( i = 0; i < 20; i++ )
  AddOne( &num );

 printf( “Final value is %d.”, num );

 return 0;
}

void AddOne( int *myVar )
{
 (*myVar) ++;
} 
  

b)
int gNumber;
int MultiplyIt( int myVar );

int main (int argc, const char * argv[])
{
 int i;
 gNumber = 2;

 for ( i = 1; i <= 2; i++ )
  gNumber *= MultiplyIt( gNumber );

 printf( “Final value is %d.”, gNumber );

 return 0;
}

int MultiplyIt( int myVar )
{
 return( myVar * gNumber );
}

c)
int gNumber;
int DoubleIt( int myVar );

int main (int argc, const char * argv[])
{
 int i;
 gNumber = 1;

 for ( i = 1; i <= 10; i++ )
  gNumber = DoubleIt( gNumber );

 printf( “Final value is %d.”, gNumber );

 return 0;
}

int DoubleIt( int myVar )
{
 return 2 * myVar;
}
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2) Modify main.c. Delete the first parameter of the 
function DoPower(), modifying the routine to 
return its result as a function return value instead.

3) Modify main.c. Instead of printing prime 
numbers, print only non-prime numbers. In 
addition, print one message for non-primes that 
are multiples of 3 and a different message for 
non-primes that are not multiples of 3.
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ow we’re cooking! You may now consider yourself 
a C Programmer, First Class. At this point, you’ve 
mastered all the basic elements of C programming. 
You know that C programs are made up of functions, 
one—and only one!—of which is named main(). 
Each of these functions uses keywords (such as if, 
for, and while), operators (such as =, ++, and *=), 
and variables to manipulate the program’s data.

Sometimes you’ll use a global variable to share data 
between several functions. At other times, you’ll use 
a parameter to share a variable between a calling and 
a called function. Sometimes these parameters are 
passed by value, and sometimes pointers are used to 
pass a parameter by address. Some functions return 
values. Others, declared with the void keyword, 
don’t return a value.

In this chapter, we’ll focus on variable types. Each of 
the variables in the previous example programs has 
been declared as an int. As you’ll soon see, there are 
many other data types out there.

Other Data Types
So far, the focus has been on ints, which are 
extremely useful when it comes to working with 
numbers. You can add two ints together. You can 
check if an int is even, odd, or prime. There are a lot 
of things you can do with ints, as long as you limit 
yourself to whole numbers. 

Just as a reminder, 527, 33, and -2 are all whole 
numbers, while 35.7, 92.1, and -1.2345 are not whole 
numbers.

What do you do if you want to work with non-whole 
numbers, such as 3.459 and -98.6? Check out this 
slice of code:

int myNum;

myNum = 3.5;
printf( “myNum = %d”, myNum );

Since myNum is an int, the number 3.5 will be 
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truncated before it is assigned to myNum. When this 
code ends, myNum will be left with a value of 3 and 
not 3.5 as intended. Do not despair. There are several 
special C data types created especially for working 
with non-whole, or floating point numbers.

The name floating-point refers to the decimal point 
found in all floating-point numbers.

The three floating point data types are float, 
double, and long double. The difference 
between these types is the number of bytes allocated 
to each and, therefore, the range of values each 
can hold. The relative sizes of these three types is 
completely implementation dependent. Here’s a 
program you can run to tell you the size of these 
three types in your development environment, and 
to show you various ways to use printf() to print 
floating point numbers.

floatSizer
Look inside the Learn C Projects folder, inside the 
subfolder named 08.0 - floatSizer, and open the 
project named floatSizer.xcode. Figure 8. shows the 
results when I ran floatSizer on my Mac using 
Xcode. The first three lines of output tell you the size, 
in bytes, of the types float, double, and long 
double, respectively.

Never assume the size of a type. As you’ll see 
when we go through the source code, C gives you 

everything you need to check the size of a specific 
type in your development environment. If you need 
to be sure of a type’s size, write a program and check 
the size for yourself.

Figure 8. The output from floatSizer.

Walking Through the Source Code
main.c starts with the standard #include.

#include <stdio.h>

main() defines three variables, a float, a 
double, and a long double.
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int main (int argc, const char * argv[])
{
 float   myFloat;
 double   myDouble;
 long double  myLongDouble;

Next, we’ll assign a value to each of the three 
variables. Notice that we’ve assigned the same 
number to each.

 myFloat = 12345.67890123456789;
 myDouble = 12345.67890123456789;
 myLongDouble = 12345.67890123456789;

Now comes the fun part. We’ll start by using C’s 
sizeof operator to print the size of each of our 
three floating point types. Even though sizeof 
doesn’t look like the other operators we’ve seen (+, *, 
<<, and so on) it is indeed an operator. Stranger still, 
sizeof requires a pair of parentheses surrounding 
a single parameter, much like a function. The 
parameter is either a type or a variable. sizeof() 
returns the size, in bytes, of its parameter.

Like return, sizeof doesn’t always require a pair 
of parentheses. If the sizeof operand is a type, the 
parentheses are required. If the sizeof operand is 
a variable, the parentheses are optional. Rather than 
trying to remember this rule, avoid confusion and 
always use parentheses with sizeof.

Did you notice the (int) to the left of each 
sizeof? This is known as a typecast. A typecast 
tells the compiler to convert a value of one type 
to a specified type. In this case, we are taking the 
type returned by sizeof and converting it to an 
int. Why do this? sizeof returns a value of type 
size_t (wierd type name, eh?) and printf() 
doesn’t have a format specifier that corresponds to a 
size_t. By converting the size_t to an int, we 
can use the “%d” format specifier to print the value 
returned by sizeof. Notice the extra “\n” at the 
end of the third printf() that gives us a blank line 
between the first three lines of output and the next 
line of output.

 printf( “sizeof( float ) = %d\n”, (int)sizeof( 
float ) );

 printf( “sizeof( double ) = %d\n”, 
(int)sizeof( double ) );

 printf( “sizeof( long double ) = %d\n\n”, 
(int)sizeof( long double ) );
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If the concept of typecasting is confusing to you, have 
no fear. We’ll get into typecasting in Chapter 11. Till 
then, you can use this method whenever you want to 
print the value returned by sizeof. Alternatively, 
you might declare a variable of type int, assign the 
value returned by sizeof to the int, then print 
the int:

int   myInt;

myInt = sizeof( float );

printf( “sizeof( float ) = %d\n”, myInt 

);

Use whichever method works for you.

The rest of this program is dedicated to various 
and sundry ways you can print your floating point 
numbers. So far, all of our programs have printed 
ints using the “%d” format specifier. The Standard 
Library has a set of format specifiers for all of C’s 
built-in data types, including several for printing 
floating point numbers.

First, we’ll use the format specifer “%f” to print our 
three floating point numbers in their natural, decimal 
format.

 printf( “myFloat = %f\n”, myFloat );
 printf( “myDouble = %f\n”, myDouble );
 printf( “myLongDouble = %f\n\n”, myLongDouble 
);

Here’s the result of these three printf()s:

myFloat = 12345.678711
myDouble = 12345.678901
myLongDouble = 12345.678901

As a reminder, all three of these numbers was 
assigned the value:

12345.67890123456789

Hmmm...None of the numbers we printed matches 
this number. And the first number we printed is 
different than the second and third numbers. What 
gives? There are several problems here. As we’ve 
already seen, this development environment uses 4 
bytes for a float and 8 bytes each for a double 
and long double. This means that the number:

12345.67890123456789

can be represented more accurately using a double 
or long double than it can be using a float. In 
addition, we are printing using the default precision 
of the “%f” format specifier. In this case, we are only 
printing 6 places past the decimal point. Though this 
might be plenty of precision for most applications, 
we’d like to see how accurate we can get.
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Our next three printf()s use format specifier 
modifiers to more closely specify the output 
produced by printf(). By using “%25.16f” 
instead of “%f”, we tell printf() to print the 
floating point number with an accuracy of 6 places 
past the decimal, and to add spaces if necessary so 
the number takes up at least 25 character positions.

 printf( “myFloat = %25.16f\n”, myFloat );
 printf( “myDouble = %25.16f\n”, myDouble );
 printf( “myLongDouble = %25.16f\n\n”, 
myLongDouble );

Here’s the result of these three printf()s:

myFloat =    12345.6787109375000000
myDouble =    12345.6789012345670926
myLongDouble =    12345.6789012345670926

printf() printed each of these numbers to 6 
places past the decimal place (count the digits 
yourself ), padding each result with zeros as needed. 
Since the 6 digits to the right of the decimal, plus 
 space for the decimal, plus 5 for the 5 digits to the 
left of the decimal is equal to 22 (6++5=22), and 
we asked printf() to use 25 character positions, 
printf() added 3 spaces to the left of the number.

We originally asked printf() to print a float 
with a value of:

12345.67890123456789

The best approximation of this number we were able 
to represent by a float is:

12345.6787109375000000

Where did this approximation come from? The 
answer has to do with the way your computer stores 
floating-point numbers.

The fractional part of a number (the number to the 
right of the decimal) is represented in binary just like 
an integer. Instead of the sum of powers of 2, the 
fractional part is represented as the sum of powers of 
1/2. For example, the number .75 is equal to 1/2 + 1/4. 
In binary, that’s 11.

The problem with this representation is that it’s 
impossible to represent some numbers with 
complete accuracy. If you need a higher degree of 
accuracy, use double or long double instead of 
float. Unless you cannot afford the extra memory 
that the larger data types require, you are probably 
better off using a double or long double in your 
programs instead of a float for all your floating 
point calculations.

Note that even an 8-byte double is not big enough 
to perfectly represent our original number. Pretty 
darn close, though!

The next four printf()s show you the result of 
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using different modifer values to print the same 
float.

 printf( “myFloat = %10.1f\n”, myFloat );
 printf( “myFloat = %.2f\n”, myFloat );
 printf( “myFloat = %.12f\n”, myFloat );
 printf( “myFloat = %.9f\n\n”, myFloat );

Here’s the output produced by each of the 
printf()s.

myFloat =    12345.7
myFloat = 12345.68
myFloat = 12345.678710937500
myFloat = 12345.678710938

The specifier “%10.1f” told printf() to print 
 digit past the decimal and to use 0 character 
positions for the entire number. The specifier “%.2f” 
told printf() to print 2 digits past the decimal 
and to use as many character positions as necessary 
to print the entire number. Notice that printf() 
rounds off the result for you and doesn’t simply cut 
off the number after the specified number of places.

The specifier “%.12f” told printf() to print 2 
digits past the decimal and the specifier “%.9f” told 
printf() to print 9 digits past the decimal. Again, 
notice the rounding that takes place.

Unless you need to exactly control the total number 
of characters used to print a number, you’ll probably 
leave off the first modifier and just specify the 
number of digits past the decimal you want printed, 
using specifiers like “%.2f” and “%.9f”.

If you do use a two part modifier like “%3.2f”, 
printf() will never cut off numbers to the left of 
the decimal. For example, this code:

myFloat = 255.543;

printf( “myFloat = %3.2f”, myFLoat );

will produce this output:

myFloat = 255.54

Even though you told printf() to use 3 character 
positions to print the number, printf() was smart 
enough to not lose the numbers to the left of the 
decimal.

The next printf() uses the specifier “%e”, asking 
printf() to print the float using scientific or 
exponential notation.

 printf( “myFloat = %e\n\n”, myFloat );

Here’s the corresponding output:

myFloat = 1.234568e+04
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.234568e+04 is equal to .234568 times 0 to the 
4th power, or .234568*04 or .234568 * 0000 
== 2,345.68. The next two printf()s uses the 
specifier “%g”, letting printf() decide whether 
decimal or scientific notation will be the most 
efficient way to represent this number. The first “%g” 
deals with a myFloat value of 00,000.

 myFloat = 100000;
 printf( “myFloat = %g\n”, myFloat );

Here’s the output:

myFloat = 100000

Next, myFLoat’s value is changed to ,000,000 and 
“%g” is used once again:

 myFloat = 1000000;
 printf( “myFloat = %g\n”, myFloat );
 
 return 0;
}

Here’s the result of this last printf(). As you can 
see, this time printf() decided to represent the 
number using exponential notation:

myFloat = 1e+06

The lesson here is, use floats if you want to work 
with floating-point numbers. Use doubles or long 
doubles for extra accuracy, but beware the extra 
cost in memory usage. Use ints for maximum 
speed, if you want to work exclusively with whole 
numbers, or if you want to truncate a result. 

The Integer Types
So far, you’ve learned about 4 different types - three 
floating point types (float, double, and long 
double) and one integer type (int). In this section, 
we’ll introduce the remaining integer types: char, 
short, and long. As was the case with the three 
floating point types, the size of each of the 4 integer 
types is implementation dependent. Our next 
program, intSizer proves that point. You’ll find 
intSizer.xcode in the Learn C Projects folder, in the 
08.02 - intSizer subfolder.
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Though these forms are rarely used, a short is also 
known as a short int and a long is also known 
as a long int. As an example, these declarations 
are perfectly legal:

short int   myShort;

long int    myLong;

Though the preceding declarations are just fine, you 
are more likely to encounter declarations like these:

short    myShort;

long     myLong;

As always, choose your favorite style and be 
consistent.

intSizer consists of four printf()s, one for 
each of the integer types:

 printf( “sizeof( char ) = %d\n”, (int)sizeof( 
char ) );

 printf( “sizeof( short ) = %d\n”, 
(int)sizeof( short ) );

 printf( “sizeof( int ) = %d\n”, (int)sizeof( 
int ) );

 printf( “sizeof( long ) = %d\n”, (int)sizeof( 
long ) );

Like their floatSizer counterparts, these 
printf()s use sizeof to determine the size of 
a char, a short, an int, and a long. When I ran 
intSizer on my Mac, here’s what I saw:

sizeof( char ) = 1
sizeof( short ) = 2
sizeof( int ) = 4
sizeof( long ) = 4

Again, the point to remember is, there are no 
guarantees. Don’t assume the size of a type. Write a 
program and check for yourself.

Type Value Ranges
All the integer types can be either signed or 
unsigned. This obviously affects the range of values 
handled by that type. For example, a signed  byte 
char can store a value from -28 to 27, while an 
unsigned  byte char can store a value from 0 to 
255. If this clouds your mind with pain, now might be 
a good time to go back and review Chapter 5.

A signed 2 byte short can store values ranging 
from –32,768 to 32,767, while an unsigned 2 byte 
short can store values ranging from 0 to 65,535.

A signed 4 byte long or int can store values 
ranging from -2,47,483,648 to 2,47,483,647, while 
an unsigned 4 byte long or int can store values 
ranging from 0 to 4,294,967,295.

A 4 byte float can range in value from -3.4e+38 to 
3.4e+38. An 8 byte double or long double can 
range in value from -.7e+308 to .7e+308.
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Memory Efficiency Versus Safety
Each time you declare one of your program’s 
variables, you’ll have a decision to make. What’s 
the best type for this variable? In general, it’s a good 
policy not to waste memory. Why use a long when 
a short will do just fine? Why use a double when 
a float will do the trick?

There is a danger in being too concerned with 
memory efficiency. For example, suppose a customer 
asked you to write a program designed to print the 
numbers  through 00, one number per line. Sounds 
pretty straightforward. Just create a for loop and 
embed a printf() in the loop. In the interests 
of memory efficiency, you might use a char to act 
as the loop’s counter. After all, if you declare your 
counter as an unsigned char, it can hold values 
ranging from 0 to 255. That should be plenty, right?

unsigned char counter;

for ( counter=1; counter<=100; counter++ )
 printf( “%d\n”, counter );

This program works just fine. But suppose your 
customer comes back with a request, asking you to 
extend the program to count from  to 000 instead 
of just to 00. You happily change the 00 to 000 
like so:

unsigned char counter;

for ( counter=1; counter<=1000; counter++ )
 printf( “%d\n”, counter );

and take it for a spin. What do you think will happen 
when you run it? To find out, open the Learn C 
Projects folder, open the 08.03 - typeOverflow 
subfolder, and open and run the project 
typeOverflow.xcode.

Keep an eye on the numbers as they scroll by on the 
screen. When the number 255 appears, a funny thing 
happens. The next number will be 0, then , 2, etc. 
If you leave the program running for a while it will 
climb back up to 255, then jump to 0 and climb back 
up again. This will continue forever. You’ll also likely 
see a warning in the build window complaining that 
the comparison is always true due to limited range of 
data type.

Click on the red stop sign icon in the upper-right 
corner of the run window (or type option-command-
R) to stop the program.

The problem with this program occurs when the for 
loop increments counter when it has a value of 
255. Since an unsigned char can hold a maximum 
value of 255, incrementing it gives it a value of 0 
again. Since counter can never get higher than 255, 
the for loop never exits.

Just for kicks, edit the code and change the 
unsigned char to a signed char. What do you 
think will happen? Try it!
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The real solution here is to use a short, int, or 
long instead of a char. Don’t be stingy. Unless 
there is a real reason to worry about memory usage, 
err on the side of extravagance. Err on the side of 
safety!

Working With Characters
With its minimal range, you might think that a char 
isn’t good for much. Actually, the C deities created 
the char for a good reason. It is the perfect size to 
hold a single alphabetic character. In C, an alphabetic 
character is a single character placed between a pair 
of single quotes (‘). Here’s a test to see if a char 
variable contains the letter ‘a’:

char c;

c = ‘a’;

if ( c == ‘a’ )
 printf( “The variable c holds the character 
‘a’.” );

As you can see, the character ‘a’ is used in both an 
assignment statement and an if statement, just as if 
it were a number or a variable. 

The ASCII Character Set
In C, a signed char takes up a single byte and can 
hold a value from -28 to 27. Now, how can a char 
hold a numerical value, as well as a character value, 
such as ‘a’ or ‘+’? The answer lies with the ASCII 
character set.

ASCII stands for the American Standard Code for 
Information Interchange.
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The ASCII character set is a set of 28 standard 
characters, featuring the 26 lower-case letters, the 
26 upper-case letters, the ten numerical digits, and 
an assortment of other exciting characters, such as 
‘}’ and ‘=’. Each of these characters corresponds 
exactly to a value between 0 and 27. The ASCII 
character set ignores the values between -28 and -.

For example, the character ‘a’ has an ASCII value 
of 97. When a C compiler sees the character ‘a’ in a 
piece of source code, it substitutes the value 97. Each 
of the values from 0 to 27 is interchangeable with a 
character from the ASCII character set.

Though we make use of the ASCII character set 
throughout this book, you should know that there 
are other character sets out there. Some foreign 
alphabets have more characters than can be 
represented by a single byte. To accommodate these 
multibyte characters, ISO C features wide character 
and wide string data types.

Though we won’t get into multibyte character sets in 
this book, you should keep these things in mind as 
you write your own code. Read up on the multibyte 
extensions introduced as part of the ISO C standard. 
There’s an excellent writeup in Harbison and Steele’s 
C, A Reference Manual. The 5th edition was released in 
2002. A terrific C reference, well worth the purchase 
price.

Here’s an article whose title tells it all: The Absolute 
Minumum Every Software Developer Absolutely, 
Positively Must Know About Unicode and Character Sets 
(No Excuses!), by Joel Spolsky:

http://joelonsoftware.com/articles/Unicode.html

Rock on, Joel!

ascii.xcode
Here’s a program that will make the ASCII character 
set easier to understand. Go into the Learn C 
Projects folder, then into the 08.04 - ascii subfolder 
and open the project ascii.xcode.

Before we step through the project source code, 
let’s take it for a spin. Select Build and Run from the 

http://joelonsoftware.com/articles/Unicode.html
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Build menu. A console window similar to the one 
in Figure 8.2 should appear. The first line of output 
shows the characters corresponding to the ASCII 
values from 32 to 47. Why start with 32? As it turns 
out, the ASCII characters between 0 and 3 are 
nonprintable characters like the backspace (ASCII 
8) or the carriage return (ASCII 3). A table of the 
nonprintable ASCII characters is presented later on.

Figure 8.2 The printable ASCII characters.

Notice that ASCII character 32 is a space, also known 
as ‘ ‘. ASCII character 33 is ‘!’. ASCII character 
47 is ‘/’. This presents some interesting coding 
possibilities. For example, this code is perfectly 
legitimate:

int sumOfChars;

sumOfChars = ‘!’ + ‘/’;

What a strange piece of code! Though you will 
probably never do anything like this, try to predict 
the value of the variable sumOfChars after the 
assignment statement. And the answer is...

The character ‘!’ has a value of 33 and the character 
‘/’ has a value of 47. Therefore, sumOfChars will 
be left with a value of 80 following the assignment 
statement. C allows you to represent any number 
between 0 and 27 in two different ways: as an 
ASCII character or as a number. Let’s get back to the 
console window in Figure 8.2.

The second line of output shows the ASCII 
characters from 48 through 57. As you can see, these 
ten characters represent the digits 0 through 9. 
Here’s a little piece of code that converts an ASCII 
digit to its numerical counterpart:

char digit;
int convertedDigit;

digit = ‘3’;

convertedDigit = digit - ‘0’;

This code starts with a char named digit, 
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initialized to hold the ASCII character ‘3’. The 
character ‘3’ has a numerical value of 5. The next 
line of code subtracts the ASCII character ‘0’ from 
digit. Since the character ‘0’ has a numerical 
value of 48, and digit started with a numerical 
value of 5, convertedDigit ends up with a value 
of 5 - 48, also known as 3. Isn’t that interesting?

Subtracting ‘0’ from any ASCII digit yields that 
digit’s numerical counterpart. Though this is a great 
trick if you know you’re working with ASCII, your code 
will fail if the digits of the current character set are 
not represented in the same way as they are in ASCII. 
For example, if you were on a machine that used a 
character set where the digits were sequenced from 1 
to 9, followed by 0, the above trick wouldn’t work.

The next line of the console window shown in Figure 
8.2 shows the ASCII characters with values ranging 
from 58 to 64. The following line is pretty interesting. 
It shows the range of ASCII characters from 65 to 
90. Notice anything familiar about these characters? 
They represent the complete, upper-case alphabet.

The next line in Figure 8.2 lists ASCII characters 
with values from 9 through 96. The following line 
lists the ASCII characters with values ranging from 
97 through 22. These 26 characters represent the 
complete lower-case alphabet.

Adding 32 to an upper-case ASCII character yields its 
lower-case equivalent. Likewise, subtracting 32 from 
a lower-case ASCII character yields its upper-case 
equivalent.

Guess what? You never want to take advantage of 
this information! Instead, use the Standard Library 
routines tolower() and toupper() to do the 
conversions for you.

As a general rule, try not to make assumptions about 
the order of characters in the current character set. 
Use Standard Library functions rather than working 
directly with character values. Though it is tempting 
to do these kinds of conversions yourself, by going 
through the Standard Library you know your program 
will work across single byte character sets.

The final line in Figure 8.2 lists the ASCII characters 
from 23 to 26. As it turns out, the ASCII character 
with a value of 27 is another nonprintable character. 
Figure 8.3 shows a table of these “unprintables.” The 
left column shows the ASCII code. The right column 
shows the keyboard equivalent for that code along 
with any appropriate comments. The characters 
with comments by them are probably the only 
unprintables you’ll ever make use of.
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ASCII Unprintables
0 Used to terminate text strings (Explained later in chapter)
1 Control-A
2 Control-B
3 Control-C
4 Control-D (End of file mark, see Chapter 10)
5 Control-E
6 Control-F
7 Control-G (Beep - works in Terminal, not in Xcode)
8 Control-H (Backspace)
9 Control-I (Tab)

10 Control-J (Line feed)
11 Control-K (Vertical feed)
12 Control-L (Form feed)
13 Control-M (Carriage return, no line feed)
14 Control-N
15 Control-O
16 Control-P
17 Control-Q
18 Control-R
19 Control-S
20 Control-T
21 Control-U
22 Control-V
23 Control-W
24 Control-X
25 Control-Y
26 Control-Z
27 Control-[ (Escape character)
28 Control-|
29 Control-]
30 Control-^
31 Control-_

127 del

Figure 8.3 The ASCII unprintables.

Stepping Through the Source Code
Before we move on to our next topic, let’s take a 
look at the source code that generated the ASCII 
character listing in Figure 8.2. main.c starts off with 
the usual #include and follows it by a function 

prototype of the function PrintChars(). 
PrintChars() takes two parameters which define 
a range of chars to print.

#include <stdio.h>

void PrintChars( char low, char high );

main() calls PrintChars() 7 times in an 
attempt to functionally organize the ASCII 
characters.

int main (int argc, const char * argv[])
{
 PrintChars( 32, 47 );
 PrintChars( 48, 57 );
 PrintChars( 58, 64 );
 PrintChars( 65, 90 );
 PrintChars( 91, 96 );
 PrintChars( 97, 122 );
 PrintChars( 123, 126 );
 
 return 0;
}

PrintChars() declares a local variable, c, to act 
as a counter as we step through a range of chars.

void PrintChars( char low, char high )
{
 char c;
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We’ll use low and high to print a label for the 
current line, showing the range of ASCII characters 
to follow. Notice that we use %d to print the integer 
version of these chars. %d can handle any integer 
types no bigger than an int.

 printf( “%d to %d ---> “, low, high );

Next, a for loop is used to step through each of 
the ASCII characters, from low to high, using 
printf() to print each of the characters next to 
each other on the same line. The printf() bears 
closer inspection. Notice the use of %c (instead of 
our usual %d) to tell printf() to print a single 
ASCII character.

 for ( c = low; c <= high; c++ )
  printf( “%c”, c );

Once the line is printed, a single new line is printed, 
moving the cursor to the beginning of the next line in 
the console window. Thus ends PrintChars().

 printf( “\n” );
}

The char data type is extremely useful to C 
programmers (such as yourself ). The next two topics, 
arrays and text strings, will show you why. As you 

read through these two topics, keep the concept of 
ASCII characters in the back of your mind. As you 
reach the end of the section on text strings, you’ll see 
an important relationship develop between all three 
topics.
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Arrays
The next topic for discussion is arrays. An array turns 
a single variable into a list of variables. For example, 
this declaration:

int myNumber[ 3 ];

creates three separate int variables, referred to in 
your program as myNumber[ 0 ], myNumber[ 1 
], and myNumber[ 2 ]. Each of these variables is 
known as an array element. The number between the 
brackets ([ and ] are known as brackets or square 
brackets) is called an index. In this declaration:

char myChar[ 20 ];

the name of the array is myChar. This declaration 
will create an array of type char with a dimension of 
20. The dimension of an array is the array’s number 
of elements. The array elements will have indices 
(indices, indexes, we’re talking more than one index 
here) that run from 0 to 9. 

In C, array indices always run from 0 to one less than 
the array’s dimension.

This slice of code first declares an array of 00 ints, 
then assigns each int a value of 0:

int myNumber[ 100 ], i;

for ( i=0; i<100; i++ )
 myNumber[ i ] = 0;

You could have accomplished the same thing by 
declaring 00 individual ints, then initializing each 
individual int. Here’s what that code might look 
like:

int myNumber0, myNumber1, ......., myNumber99;

myNumber0 = 0;
myNumber1 = 0;
      .
      .
      .
myNumber99 = 0;

It would take 00 lines of code just to initialize these 
variables! By using an array, we’ve accomplished the 
same thing in just a few lines of code. Look at this 
code fragment:

sum = 0;
for ( i=0; i<100; i++ )
 sum += myNumber[ i ];

printf( “The sum of the 100 numbers is %d.”, 
sum );

This code adds together the value of all 00 elements 
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of the array myNumber.

In this example, the for loop is used to step 
through an array, performing some operation on 
each of the array’s elements. You’ll use this technique 
frequently in your own C programs.

Why Use Arrays?
Programmers would be lost without arrays. Arrays 
allow you to keep lists of things. For example, if you 
need to maintain a list of 50 employee numbers, 
declare an array of 50 ints. You can declare an array 
using any C type. For example, this code:

float salaries[ 50 ];

declares an array of 50 floating-point numbers. This 
might be useful for maintaining a list of employee 
salaries.

Use an array when you want to maintain a list of 
related data. Here’s an example.

dice.xcode
Look in the Learn C Projects folder, inside the 08.05 
- dice subfolder, and open the project dice.xcode. 
dice simulates the rolling of a pair of dice. After 
each roll, the program adds the two dice together, 
keeping track of the total. It rolls the dice ,000 
times, then reports on the results. Give it a try!

Run dice by selecting Build and Run from the Build 
menu. A console window should appear, similar to 
the one in Figure 8.4. Take a look at the output—it’s 
pretty interesting. The first column lists all the 
possible totals of two dice. Since the lowest possible 
roll of a pair of six-sided dice is  and , the first entry 
in the column is 2. The column counts all the way up 
to 2, the highest possible roll (achieved by a roll of 6 
and 6).

Figure 8.4 dice in action. Your mileage may vary!

The number in parentheses is the total number of 
rolls (out of ,000 rolls) that matched that row’s 
number. For example, the first row describes the dice 
rolls that total 2. In this run, the program rolled 3 
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2’s. Finally, the program prints an x for every ten of 
these rolls. Since 3 2’s were rolled, three x’s were 
printed at the end of the 2’s row. Since 60 7’s were 
rolled, 6 x’s were printed at the end of the 7’s row.

Recognize the curve depicted by the x’s in Figure 
8.4? The curve represents a “normal” probability 
distribution, also known as a bell curve. According to 
the curve, you are about 8.4 times more likely to roll a 
7 as you are to roll a 12. Want to know why? Check out 
a book on probability and statistics.

Let’s take a look at the source code that makes this 
possible.

Stepping Through the Source Code
main.c starts off with three #includes. <stdlib.
h> gives us access to the routines rand() and 
srand(), <time.h> gives us access to clock(), 
and <stdio.h> gives us access to printf().

#include <stdlib.h>
#include <time.h>
#include <stdio.h>

Here are the function prototypes for RollOne(), 
PrintRolls(), and PrintX(). You’ll see how 
these routines work as we walk through the code.

int RollOne( void );

void PrintRolls( int rolls[] );
void PrintX( int howMany );

main() declares an array of 3 ints named rolls. 
rolls will keep track of the  possible types of dice 
rolls. rolls[2] will keep track of the total number 
of 2’s, rolls[3] will keep track of the total number 
of 3’s, and so on, up until rolls[12] which will 
keep track of the total number of 2’s rolled. Since 
there is no way to roll a 0 or a  with a pair of dice, 
rolls[0] and rolls[1] will go unused. 

int main (int argc, const char * argv[])
{
 int  rolls[ 13 ], twoDice, i;

We could have rewritten the program using an array 
of 11 ints, thereby saving 2 ints worth of memory. 
If we did that, rolls[0] would track the number of 
2’s rolled, rolls[1] would track the number of 3’s 
rolled, etc. This would have made the program a little 
harder to read, since rolls[i] would be referring 
to the number of (i+2)’s rolled.

In general, it is OK to sacrifice memory to make 
your program easier to read, as long as program 
performance isn’t compromised.

The function srand() is part of the Standard 
Library. It initializes a random number generator, 
using a seed provided by another Standard Library 
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function, clock(). Once the random number 
generator is initialized, another function, rand(), 
will return an int with a random value.

 srand( clock() );

Why random numbers? Sometimes you want to 
add an element of unpredictability to your program. 
For example, in our program, we want to roll a pair 
of dice again and again. The program would be 
pretty boring if it rolled the same numbers over and 
over. By using a random number generator, we can 
generate a random number between  and 6, thus 
simulating the roll of a single die!

main()’s next step is to initialize each of the 
elements of the array rolls to 0. This is appropriate 
since no rolls of any kind have taken place yet.

 for ( i=0; i<=12; i++ )
  rolls[ i ] = 0;

Now comes Miller time! This for loop rolls the dice 
,000 times. As you’ll see, the function RollOne() 
returns a random number between  and 6, 
simulating the roll of a single die. By calling it twice, 
then storing the sum of the two rolls in the variable 
twoDice, we’ve simulated the roll of two dice.

 for ( i=1; i <= 1000; i++ )
 {
  twoDice = RollOne() + RollOne();

The next line is pretty tricky, so hang on. At this 
point, the variable twoDice holds a value between 
2 and 2, the total of two individual dice rolls. We’ll 
use that value to specify which of the rolls’ ints 
to increment. If twoDice is 2 (if we rolled a pair 
of sixes) we’ll increment rolls[12]. Get it? If not, 
go back and read through this again. If you still feel 
stymied (and it’s OK if you do) find a C buddy to help 
you through this. It is important that you get this 
concept. Be patient.

  ++ rolls[ twoDice ];
 }

Once we’re finished with our ,000 rolls, we’ll pass 
rolls as a parameter to PrintRolls().

 PrintRolls( rolls );
 
 return 0;
}

Notice that we used the array name, without the 
brackets (rolls instead of rolls[]). The name of 
an array is a pointer to the first element of the array. 
If you have access to this pointer, you have access to 
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the entire array. You’ll see how this works when we 
look at PrintRolls().

Just remember that passing the name of an array as a 
parameter is exactly the same as passing a pointer to 
the first element of the array. To prove this, edit main.
c and change this line of code:

PrintRolls( rolls );

to

PrintRolls( &( rolls[0] ) );

These two lines are exactly equivalent! The second 
form passes the address of the first array element. 
If you think back to our last chapter, we use the & 
operator to pass a parameter by reference instead 
of by value. By passing the address of the first array 
element, you give PrintRolls() the ability to 
both access and modify all of the array elements. This 
is an important concept!

RollOne() first calls rand() to generate a 
random number, ranging from 0 to 32,767 (actually, 
the upper bound is defined by the constant RAND_
MAX, which is guaranteed to be at least 32,767). Next, 
the % operator is used to return the remainder when 
the random number is divided by 6. This yields a 
random number ranging from 0 to 5. Finally,  is 
added to this number, converting it to a number 
between  and 6, and that number is returned.

int RollOne( void )
{
 return (rand() % 6) + 1;
}

PrintRolls() starts off by declaring a single 
parameter, an array pointer named rolls. Notice 
that rolls was declared using square brackets, 
telling the compiler that rolls is a pointer to the 
first element of an array (in this case, to an array of 
ints).

void PrintRolls( int rolls[] )
{
 int  i;
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PrintRolls() could also have declared its 
parameter using this notation:

void   PrintRolls( int *rolls )

instead of:

void   PrintRolls( int rolls[] )

Both of these notations describe a pointer to an int, 
and both can be used to access the elements of an 
array. You’ll learn more about the close relationship 
between pointers and arrays as you make your way 
through the rest of the book.

For now, remember this convention. If you are 
declaring a parameter that will point to an array, use 
the square bracket form. Otherwise, use the normal 
pointer form.

Let’s get back to our program. Before the 
previous tech block, we had just started looking 
at PrintRolls(). The for loop steps through 
the rolls array, one int at a time, starting with 
rolls[2] and making its way to rolls[12]. 
For each element, PrintRolls() first prints the 
roll number and then, in parentheses, the number 
of times (out of ,000) that roll occurred. Next, 
PrintX() is called to print a single x for every 
ten rolls that occurred. Finally, a carriage return is 
printed, preparing the console window for the next 
roll.

 for ( i=2; i<=12; i++ )

 {
  printf( “%2d (%3d):  “, i, rolls[ i ] );
  PrintX( rolls[ i ] / 10 );
  printf( “\n” );
 }
}

PrintX() is pretty straightforward. It uses a for 
loop to print the number of x’s specified by the 
parameter howMany.

void PrintX( int howMany )
{
 int i;
 
 for ( i=1; i<=howMany; i++ )
  printf( “x” );
}
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Danger, Will Robinson!!!
Before we move on to our next topic, there is one 
danger worth discussing at this point. See if you can 
spot the potential hazard in this piece of code:

int myInts[ 3 ];

for ( i=0; i<20; i++ )
 myInts[ i ] = 0;

Yikes! The array myInts consists of exactly three 
array elements, yet the for loop tries to initialize 
20 elements. This is called exceeding the bounds of 
your array. Because C is such an informal language, it 
will let you “get away” with this kind of source code. 
To you, that means Xcode will compile this code 
without complaint. Your problems will start as soon 
as the program tries to initialize the fourth array 
element, which was never allocated.

What will happen? The safest thing to say is that the 
results will be unpredictable. The problem is, the 
program is trying to assign a value of 0 to a block of 
memory that it doesn’t necessarily own. Anything 
could happen. The program would most likely crash, 
which means it stops behaving in a rational manner. 
I’ve seen some cases where the computer actually 
leaps off the desk, hops across the floor, and jumps 
face first into the trash can.

Well, OK, not really. Modern operating systems 
protect the boundaries of individual applications to 

protect one application from crashing another. But 
odd things will happen if you don’t keep your array 
references in bounds.

As you code, be aware of the limitations of your 
variables. For example, a char is limited to values 
from -128 to 127. Don’t try to assign a value such as 
536 to a char. Don’t reference myArray[ 27 ] if 
you declared myArray with only ten elements. Be 
careful!
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Text Strings
The first C program in this book made use of a text 
string:

printf( “Hello, world!” );

This section will teach you how to use text strings 
like “Hello, world!” in your own programs. 
It will teach you how these strings are stored in 
memory and how to create your own strings from 
scratch.

A Text String in Memory
The text string “Hello, world!” exists in 
memory as a sequence of 4 bytes (Figure 8.5). The 
first 3 bytes consist of the 3 ASCII characters in 
“Hello, world!”. Note that the seventh byte 
contains a space (on an ASCII-centric computer, that 
translates to a value of 32).

1

H
2

e
3

l
4

l
5

o
6

,
7 8

w
9

o
10

r
11

l
12

d
13

!
14

0space

Figure 8.5 The “Hello, World!” text string. Don’t 
forget, byte 4 contains a zero.

The final byte (byte 4) has a value of zero, not to be 
confused with the ASCII character ‘0’. The zero is 

what makes this string a C string. Every C string ends 
with a byte having a value of 0. The 0 identifies the 
end of the string.

When you use a quoted string like “Hello, 
world!” in your code, the compiler creates the 
string for you. This type of string is called a string 
constant. When you use a string constant in your 
code, the detail work is done for you automatically. In 
this example:

printf( “Hello, world!” );

the 4 bytes needed to represent the string in 
memory are allocated automatically. The 0 is placed 
in the fourteenth byte, automatically. You don’t have 
to worry about these details when you use a string 
constant.

String constants are great, but they are not always 
appropriate. For example, suppose you want to 
read in somebody’s name, then pass the name on to 
printf() to display in the console window. Since 
you won’t be able to predict the name that will be 
typed in, you can’t predefine the name as a string 
constant. Here’s an example.

name.xcode
Look in the Learn C Projects folder, inside the 08.06 
- name subfolder, and open the project name.xcode. 
name will ask you to type your first name on the 
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keyboard. Once you’ve typed your first name, the 
program will use your name to create a custom 
welcome message. Then, name will tell you how 
many characters long your name is. How useful!

To run name, select Build and Run from the Build 
menu. A console window will appear, prompting you 
for your first name, like this:

Type your first name, please:

Type your first name, then hit a carriage return. 
When I did, I saw the output shown in Figure 8.6. 
Let’s take a look at the source code that generated 
this output.

Figure 8.6 name prompts you to type in your name, then 
tells you how long your name is.

Stepping Through the Source Code
At the heart of main.c is a new Standard Library 
function called scanf(). scanf() uses the same 
format specifiers as printf() to read text in from 
the keyboard. This code will read in an int:

int myInt;

scanf( “%d”, &myInt );

The %d tells scanf() to read in an int. Notice the 
use of the & before the variable myInt. This passes 
myInt’s address to scanf(), allowing scanf() 
to change myInt’s value. To read in a float, use code 
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like:

float myFloat;

scanf( “%f”, &myFloat );

main.c starts off with a pair of #includes. 
<string.h> gives us access to the Standard 
Library function strlen(), and <stdio.h>, 
well, you know what we get from <stdio.h>. 
printf(), right? Right.

#include <string.h>
#include <stdio.h>

To read in a text string, you have to first declare a 
variable to place the text characters in. main.c uses 
an array of characters for this purpose:

int main (int argc, const char * argv[])
{
 char name[ 50 ];

The array name is big enough to hold a 49-byte text 
string. When you allocate space for a text string, 
remember to save  byte for the 0 that terminates the 
string.

The program starts by printing a prompt. A prompt 
is a text string that lets the user know the program is 

waiting for input.

 printf( “Type your first name, please: “ );

The Input Buffer
Before we get to the scanf() call, it helps to 
understand how the computer handles input from 
the keyboard. When the computer starts running 
your program, it automatically creates a big array 
of chars for the sole purpose of storing keyboard 
input to your program. This array is known as your 
program’s input buffer. The input buffer is carriage-
return based. Every time you hit a carriage return, all 
the characters typed since the last carriage return are 
appended to the current input buffer.

When your program starts, the input buffer is empty. 
If you type this line from your keyboard:

123 abcd

followed by a carriage return, the input buffer will 
look like Figure 8.7. The computer keeps track of the 
current end of the input buffer. The space character 
between the ‘123’ and the ‘abcd’ has an ASCII 
value of 32. Notice that the carriage return was 
actually placed in the input buffer.
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The ASCII value of the character used to indicate a 
carriage return is implementation dependent. In most 
consoles, an ASCII 10 indicates a carriage return. On 
some, an ASCII 13 indicates a carriage return. Use the 
‘\n’ character and you’ll always be safe.

1 2 3 a b c dspace

return

End of 
Input Buffer

Figure 8.7 A snapshot of the input buffer.

Given the input buffer shown in Figure 8.7, suppose 
your program called scanf(), like this:

scanf( “%d”, &myInt );

scanf() starts at the beginning of the input buffer 
and reads a character at a time until it hits one of the 
nonprintables; that is, a carriage return, tab, space, or 
a 0, until it hits the end of the buffer, or until it hits a 
character that conflicts with the format specifier (if 
%d was used and the letter ‘a’ was encountered, for 
example).

After the scanf(), the input buffer looks like 

Figure 8.8. Notice that the characters passed on 
to scanf() were removed from the input buffer 
and that the rest of the characters slid over to 
the beginning of the buffer. scanf() took the 
characters ‘1’, ‘2’, and ‘3’ and converted them 
to the integer 23, placing 23 in the variable myInt.

a b c d return

End of 
Input Buffer

Figure 8.8 A second snapshot of the input buffer.

If you then typed the line:

3.5 Dave

followed by a carriage return, the input buffer would 
look like Figure 8.9. At this point the input buffer 
contains two carriage returns. To the input buffer, a 
carriage return is just like any other character. To a 
function like scanf(), the carriage return is white 
space.
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a b c d 3 . 5 D a v ereturn

return

End of 
Input Buffer

space

Figure 8.9 A third snapshot of the input buffer.

If you forgot what white space is, now would be a 
good time to turn back to Chapter 5, where white 
space was first described.

On With the Program
Before we started our discussion on the input buffer, 
main() had just called printf() to prompt the 
user for his or her first name:

 printf( “Type your first name, please: “ );

Next, we called scanf() to read the first name 
from the input buffer:

 scanf( “%s”, name );

Since the program just started, the input buffer is 
empty. scanf() will wait until characters appear 
in the input buffer, which will happen as soon as you 
type some characters and hit a carriage return. Type 

your first name and hit a carriage return.

scanf() will ignore white space characters in the 
input buffer. For example, if you type a few spaces 
and tabs, then hit a carriage return, scanf() will 
still sit there, waiting for some real input. Try it!

Once you type in your name, scanf() will copy the 
characters, a byte at a time, into the array of chars 
pointed to by name. Remember, because name was 
declared as an array, name points to the first of the 
50 bytes allocated for the array.

If you type in the name Dave, scanf() will place 
the four characters ‘D’, ‘a’, ‘v’, and ‘e’ in the 
first four of the 50 bytes allocated for the array. Next, 
scanf() will set the fifth byte to a value of 0 to 
terminate the string properly (Figure 8.0). Since the 
string is properly terminated by the 0 in name[4], 
we don’t really care about the value of the bytes 
name[5] through name[49].
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D a v e 0

name
points here

10 2 3 4 5 48 49

Figure 8.0 The array name after the string “Dave” is 
copied to it. Notice that name[4] has a value of zero.

Next, we pass name on to printf(), asking it to 
print the name as part of a welcoming message. The 
%s tells printf() that name points to the first byte 
of a zero-terminated string. printf() will step 
through memory, one byte at a time, starting with 
the byte that name points to. printf() will print 
each byte in turn until it hits a byte with a value of 
zero. The zero byte marks the end of the string.

 printf( “Welcome, %s.\n”, name );

If name[4] didn’t contain a 0, the string wouldn’t 
be properly terminated. Passing a non-terminated 
string to printf() is a sure way to confuse 
printf(). printf() will step through memory 
one byte at a time, printing a byte and looking for 
a 0. It will keep printing bytes until it happens to 
encounter a byte set to 0. Remember, C strings must 
be terminated!

The next line of the program calls another Standard 
Library function, called strlen(). strlen() 
takes a pointer as a parameter and returns the 
length, in bytes, of the string pointed to by the 
parameter. strlen() depends on the string being 0 
terminated. Just like sizeof(), strlen() returns 
a value of type size_t. We’ll use a typecast to 
convert the value to an int, then print it using %d. 
Again, we’ll cover typecasting later in the book.

 printf( “Your name is %d characters long.”, 
(int)strlen( name ) );

 
 return 0;
}

Our last program for this chapter demonstrates a few 
more character-handling techniques, a new Standard 
Library function, and an invaluable programmer’s 
tool, the #define.
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The #define
The #define (pronounced pound-define) tells the 
compiler to substitute one piece of text for another 
throughout your source code. This statement:

#define kMaxPlayers 6

tells the compiler to substitute the character “6” 
every time it finds the text “kMaxPlayers” in the 
source code. kMaxPlayers is known as a macro.  
As the C compiler goes through your code, it enters 
all the #defines into a list, known as a dictionary, 
performing all the #define substitutions as it goes.

It’s important to note that the compiler never actually 
modifies your source code. The dictionary it creates 
as it goes through your code is separate from your 
source code and the substitutions it performs are 
made as the source code is translated into machine 
code.

Here’s an example of a #define in action:

#define kMaxArraySize 100

int main (int argc, const char * argv[])
{
 char myArray[ kMaxArraySize ];
 int  i;

 for ( i=0; i<kMaxArraySize; i++ )

  myArray[ i ] = 0;

 return 0;
}

The #define at the beginning of this example 
substitutes “100” for “kMaxArraySize” 
everywhere it finds it in the source code file. In this 
example, the substitution will be done twice. Though 
your source code is not actually modified, here’s the 
effect of this #define:

int main (int argc, const char * argv[])
{
 char myArray[ 100 ];
 int  i;

 for ( i=0; i<100; i++ )
  myArray[ i ] = 0;

 return 0;
}
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Note that a #define must appear in the source 
code file before it is used. In other words, this code 
won’t compile:

int main (int argc, const char * 
argv[])

{

  char   myArray[ kMaxArraySize ];

  int    i;

#define kMaxArraySize   100

  for ( i=0; i<kMaxArraySize; i++ )

      myArray[ i ] = 0;

  return 0;

}

Having a #define in the middle of your code is 
just fine. The problem here is that the declaration of 
myArray uses a #define that hasn’t occurred yet!

If you use #defines effectively, you’ll build more 
flexible code. In the previous example, you can 
change the size of the array by modifying a single line 
of code, the #define. If your program is designed 
correctly, you should be able to change the line to:

#define kMaxArraySize 200

then recompile your code, and your program should 
still work properly. A good sign that you are using 
#defines properly is an absence of constants in 
your code. In the above example, the constant 00 
was replaced by kMaxArraySize.

Many programmers use the same naming convention 
for #defines as they use for global variables. 
Instead of starting the name with a g (as in 
gMyGlobal), a #define constant starts with a k 
(as in kMyConstant).

Unix programmers tend to name their #define 
constants using all upper case letters, sprinkled with 
underscores “_” to act as word dividers (as in MAX_
ARRAY_SIZE).

As you’ll see in our next program, you can put 
practically anything, even source code, into a 
#define. Take a look:

#define kPrintReturn printf( “\n” );

While not particularly recommended, this #define 
will work just fine, substituting the statement:

printf( “\n” );

for every occurrence of the text kPrintReturn in 
your source code. You can base one #define on a 
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previous #define:

#define kSideLength 5
#define kArea kSideLength * kSideLength

Interestingly, you could have reversed the order of 
these two #defines, and your code would still 
have compiled. As long as both entries are in the 
dictionary, their order of occurrence in the dictionary 
is not important.

What is important is that #define appear in the 
source code before any source code that refers to it.

If this seems confusing, don’t sweat it. It won’t be on 
the test.

Function-Like #define Macros
You can create a #define macro that takes one or 
more arguments. Here’s an example:

#define kSquare( a ) ((a) * (a))

This macro takes a single argument. The argument 
can be any C expression. If you called the macro like 
this:

myInt = kSquare( myInt + 1 );

the compiler would use its first pass to turn the line 
into this:

myInt = (( myInt + 1 ) * ( myInt + 1 ));

Notice the usefulness of the parentheses in the 
macro. If the macro were defined like this:

#define kSquare( a ) a * a

the compiler would have produced:

myInt = myInt + 1 * myInt + 1;

which is not what we wanted. The only multiplication 
that gets performed by this statement is 1 * myInt, 
because the * operator has a higher precedence than 
the + operator.

Be sure you pay strict attention to your use of white 
space in your #define macros. For example, there’s 
a world of difference between this macro:

#define kSquare( a ) ((a) * (a))

and this macro (note the space between kSquare 
and ( a ):
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#define kSquare ( a ) ((a) * (a))

This second form creates a #define constant 
named kSquare which is defined as “( a ) 
((a) * (a))”. A call to this macro won’t even 
compile because the compiler doesn’t know what “a” 
is.

Here’s another interesting macro side-effect. Imagine 
calling this macro:

#define kSquare( a ) ((a) * (a))

like this:

mySquare = kSquare( myInt++ );

The preprocessor pass expands this macro call to:

mySquare = ((myInt++) * (myInt++));

Do you see the problems here? First off, myInt will 
get incremented twice by this macro call (probably 
not what was intended). Secondly, the first myInt++ 
will get executed before the multiply happens, 
yielding a final result of myInt*(myInt+1), 
definitely not what you wanted! The point here: Be 

careful when you pass an expression as a parameter 
to a macro.

Let’s move on to our final example.

wordCount.xcode
Look in the Learn C Projects folder, inside the 
08.07 - wordCount subfolder, and open the project 
wordCount.xcode. wordCount will ask you to type 
in a line of text and will count the number of words 
in the text you type.

To run wordCount, select Build and Run from the 
Build menu. wordCount will prompt you to type in 
a line of text:

Type a line of text, please:

Type in a line of text, at least a few words long. End 
your line by typing a carriage return. When you 
hit the return, wordCount will report its results. 
wordCount will ignore any white space, so feel free 
to sprinkle your input with tabs, spaces, and the like. 
My output is shown in Figure 8.. Let’s take a look at 
the source code that generated this output.
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Figure 8. wordCount, doing its job.

Stepping Through the Source Code
main.c starts off with the usual #includes, and 
then adds a new one. <ctype.h> includes the 
prototype of the function isspace(), which takes 
a char as input and returns true if the char is 
either a tab (‘\t’), hard carriage return (return 
without a line feed - ‘\r’), newline (return with a 
line feed - ‘\n’), vertical tab (‘\v’), form feed (‘\
f’), or space (‘ ‘), and returns false otherwise.

#include <stdio.h>
#include <c.h>
#include <ctype.h>

Older C environments may include a variant of 
isspace() called iswhite().

Next, we define a pair of constants. 
kMaxLineLength specifies the largest line this 
program can handle. 200 bytes should be plenty. 
kZeroByte has a value of zero and is used to mark 
the end of the line of input. More of this in a bit.

#define kMaxLineLength  200
#define kZeroByte   0

Here are the function prototypes for the two 
functions ReadLine() and CountWords(). 
ReadLine() reads in a line of text and 
CountWords() takes a line of text and returns the 
number of words in the line.

void ReadLine( char *line );
int  CountWords( char *line );

main() starts by defining an array of chars that 
will hold the line of input we type and an int that 
will hold the result of our call to CountWords().

int main (int argc, const char * argv[])
{
 char line[ kMaxLineLength ];
 int  numWords;
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Once we type the prompt, we’ll pass line to 
ReadLine(). Remember that line is a pointer 
to the first byte of the array of chars. When 
ReadLine() returns, line contains a line of text, 
terminated by a zero byte, making line a legitimate, 
zero-terminated C string. We’ll pass that string on to 
CountWords().

 printf( “Type a line of text, please:\n” );

 ReadLine( line );
 numWords = CountWords( line );

We then print a message telling us how many words 
we just counted.

 printf( “\n---- This line has %d word”, 
numWords );

 
 if ( numWords != 1 )
  printf( “s” );
 
 printf( “ ----\n%s\n”, line );
 
 return 0;
}

This last bit of code shows attention to detail, 
something very important in a good program. Notice 
that the first printf() ended with the characters 
“word”. If the program found either no words or 
more than one word, we want to say:

This line has 0 words.

or

This line has 2 words.

If the program found exactly one word, the sentence 
should read:

This line has 1 word.

The last if statement makes sure the “s” gets added 
if needed.

In main(), we defined an array of chars to hold 
the line of characters we type in. When main() 
called ReadLine(), it passed the name of the array 
as a parameter to ReadLine():

 char  line[ kMaxLineLength ];

 ReadLine( line );

As we said earlier, the name of an array also acts as a 
pointer to the first element of the array. In this case, 
line is equivalent to &(line[0]). ReadLine() 
now has a pointer to the first byte of main()’s line 
array.
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void ReadLine( char *line )
{

This while loop calls getchar() to read 
a character at a time from the input buffer. 
getchar() returns the next character in the input 
buffer or, if there’s an error, it returns the constant 
EOF. You’ll learn more about EOF in Chapter 0.

The first time through the loop, line points to the 
first byte of main()’s line array. At this point, the 
expression *line is equivalent to the expression 
line[0]. The first time through the loop, we’re 
getting the first character from the input buffer and 
copying it into line[0].

The while loop continues as long as the character 
we just read in is not ‘\n’ (as long as we have not 
yet retrieved the return character from the input 
buffer).

 while ( (*line = getchar()) != ‘\n’ )
  line++;

Each time through the loop, we’ll increment 
ReadLine()’s local copy of the pointer line, so it 
points to the next byte in main()’s line array. The 
next time through the loop, we’ll read a character 
into the second byte of the array, then the third byte, 
etc., until we read in a ‘\n’, and we drop out of the 

loop.

This technique is known as pointer arithmetic. When 
you increment a pointer that points into an array, 
the value of the pointer is actually incremented just 
enough to point to the next element of the array. For 
example, if line were an array of 4 byte floats 
instead of chars, this line of code:

line++;

would increment line by 4 instead of by 1. In both 
cases, line would start off pointing to line[0] 
then, after the statement line++, line would 
point to line[1].

Take a look at this code:

char    charPtr;

float    floatPtr;

double  doublePtr;

charPtr++;

floatPtr++;

doublePtr++;

In the last three statements, charPtr gets 
incremented by 1 byte, floatPtr gets incremented 
by 4 bytes, and doublePtr gets incremented by 8 
bytes (assuming 1 byte chars, 4 byte floats, and 8 
byte doubles).
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This is an extremely important concept to 
understand. If this seems fuzzy to you, go back 
and reread this section, then write some code to 
make sure you truly understand how pointers work, 
especially as they relate to arrays.

Once we drop out of the loop, we’ll place a zero in 
the next position of the array. This turns the line 
into a zero-terminated string we can print using 
printf().

 *line = kZeroByte;
}

CountWords() also takes a pointer to the first 
byte of main()’s line array as a parameter. 
CountWords() will step through the array, 
looking for non-white space characters. When one 
is encountered, CountWords() sets inWord 
to true and increments numWords, then keeps 
stepping through the array looking for a white-space 
character which marks the end of the current word. 
Once the white-space is found, inWord is set to 
false.

int CountWords( char *line )
{
 int  numWords, inWord;
 
 numWords = 0;
 inWord = false;

This process continues until the zero byte marking 
the end of the line is encountered.

 while ( *line != kZeroByte )
 {
  if ( ! isspace( *line ) )
  {
   if ( ! inWord )
   {
    numWords++;
    inWord = true;
   }
  }
  else
   inWord = false;
   
  line++;
 }

Once we drop out of the loop, we’ll return the 
number of words in the line.

 return numWords;
}

Now that you’ve seen arrays and pointers, there’s 
something you should know. Every program in our 
book features a main() function that takes a pair of 
parameters:
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int main (int argc, const char * 
argv[])

Though we won’t make use of these parameters in 
the book, here’s the basics. The first parameter, argc, 
is an int that tells you how many parameters are 
folded into the second parameter, argv. argv is an 
array of pointers, each of which points to a parameter.

And where do these parameters come from, you 
may ask? Great question! They come from the Unix 
command line. When you launch a program using 
Terminal, you can add in a list of parameters. For 
example, suppose we wrote a program that counted 
the number of words in a text file. In the Unix 
universe, we’d typically start the program like this:

$ countWords

The dollar sign ($) is the Unix command line prompt 
and countWords is the name of the program we are 
running. countWords might prompt us for the name 
of a text file, then go count its words.

Another approach would be to launch the program 
like so:

$ countWords myFile.txt

Now, when countWords gets launched, argc will 
have a value of 1 and argv will contain a single array 
element, a pointer to a char array containing the 
string “myFile.txt”. Just thought you might be 
wondering!

What’s Next?
Congratulations! You’ve made it through one of the 
longest chapters in the book. You’ve mastered several 
new data types, including floats and chars. 
You’ve learned how to use arrays, especially in 
conjunction with chars. You’ve also learned about 
C’s text-substitution mechanism, the #define.

Chapter 9 will teach you how to combine C’s data 
types to create your own customized data types 
called structs. So go grab some lunch, lean back, 
prop up your legs, and turn the page.
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Exercises
) What’s wrong with each of the following code 

fragments:

      a)
 char c;
 int  i;

 i=0;
 for ( c=0; c<=255; c++ )
    i += c;

      b)
 float myFloat;

 myFloat = 5.125;
 printf( “The value of myFloat is %d.\n”, f );

      c)
 char c;

 c = “a”;

 printf( “c holds the character %c.”, c );

      d)
 char c[ 5 ];

 c = “Hello, world!”;

      e)
 char c[ kMaxArraySize ]

 #define kMaxArraySize 20

 int i;

 for ( i=0; i<kMaxArraySize; i++ )
    c[ i ] = 0;

      f )
 #define kMaxArraySize 200

 char c[ kMaxArraySize ];

 c[ kMaxArraySize ] = 0;

      g)
 #define kMaxArraySize 200

 char c[ kMaxArraySize ], *cPtr;
 int  i;

 cPtr = c;
 for ( i=0; i<kMaxArraySize; i++ )
    cPtr++ = 0;
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      h)
 #define kMaxArraySize 200

 char c[ kMaxArraySize ];
 int  i;

 for ( i=0; i<kMaxArraySize; i++ )
 {
  *c = 0;
  c++;
 }

      i)
 #define kMaxArraySize 200;

2) Rewrite dice.xcode’s main.c, showing the possible 
rolls using three dice instead of two.

3) Rewrite wordCount.xcode’s main.c, printing each 
of the words, one per line.
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n Chapter 8, we introduced several new data types, 
such as float, char, and short. We discussed 
the range of each type and introduced the format 
specification characters necessary to print each type 
using printf(). Next, we introduced the concept 
of arrays, focusing on the relationship between char 
arrays and text strings. Along the way, we discovered 
the #define, C’s text substitution mechanism.

This chapter will show you how to use existing 
C types as building blocks to design your own 
customized data structures.

Structures
There will be times when your programs will want 
to bundle certain data together. For example, 
suppose you were writing a program to organize 
your compact disc collection. Imagine the type of 
information you’d like to access for each CD. At the 
least, you’d want to keep track of the artist’s name 
and the name of the CD. You might also want to rate 
each CD’s listenability on a scale of  to 0. 

In the next few sections, we’ll look at two separate 
approaches to a basic CD-tracking program. Each 
approach will revolve around a different set of data 
structures. One will make use of arrays and the other 
a set of custom designed data structures.
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Model A: Three Arrays
One way to model your CD collection is with a 
separate array for each CD’s attributes:

#define kMaxCDs   5000
#define kMaxArtistLength  256
#define kMaxTitleLength  256

char rating[ kMaxCDs ];
char artist[ kMaxCDs ][ kMaxArtistLength ];
char title[ kMaxCDs ][ kMaxTitleLength ];

This code fragment uses three #defines. 
kMaxCDs defines the maximum number of CDs 
this program will track. kMaxArtistLength  
defines the maximum length of a CD artist’s name. 
kMaxTitleLength defines the maximum length 
of a CD’s title.

rating is an array of 5,000 chars, one char 
per CD. Each of the chars in this array will hold a 
number from  to 0, the rating we’ve assigned to a 
particular CD. This line of code assigns a value of 8 to 
CD 37:

rating[ 37 ] = 8; /* A pretty good CD */

The arrays artist and title are each known 
as multi-dimensional arrays. A normal array, like 
rating, is declared using a single dimension. The 
statement:

float  myArray[ 5 ];

declares a normal or one-dimensional array 
containing 5 floats, namely:

myArray[ 0 ]
myArray[ 1 ]
myArray[ 2 ]
myArray[ 3 ]
myArray[ 4 ]

The statement:

float  myArray[ 3 ][ 5 ];

declares a two-dimensional array, containing 3*5 = 5 
floats, namely:

myArray[0][0]
myArray[0][1]
myArray[0][2]
myArray[0][3]
myArray[0][4]
myArray[1][0]
myArray[1][1]
myArray[1][2]
myArray[1][3]
myArray[1][4]
myArray[2][0]
myArray[2][1]
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myArray[2][2]
myArray[2][3]
myArray[2][4]

Think of a two dimensional array as an array of 
arrays. myArray[0] is an array of 5 floats. 
myArray[1] and myArray[2] are also arrays of 5 
floats each.

Here’s a three dimensional array:

float  myArray[ 3 ][ 5 ][ 10 ];

How many floats does this array contain? Tick, 
tick, tick... Got it? 3*5*0 = 50. This version of 
myArray contains 50 floats.

C allows you to create arrays of any dimension, 
though you’ll rarely have a need for more than a 
single dimension.

So why would you ever want a multi-dimensional 
array? If you haven’t already guessed, the answer 
to this question is going to lead us back to our CD 
tracking example.

Here are the declarations for our three CD-tracking 
arrays:

#define kMaxCDs   5000
#define kMaxArtistLength  256

#define kMaxTitleLength  256

char rating[ kMaxCDs ];
char artist[ kMaxCDs ][ kMaxArtistLength ];
char title[ kMaxCDs ][ kMaxTitleLength ];

Once again, rating contains one char per CD. 
artist, on the other hand, contains an array of 
chars for each CD. Each CD gets an array of chars 
whose length is kMaxArtistLength. Each array 
is large enough to hold an artist’s name up to 255 
bytes long with a single byte left over to hold the 
terminating zero byte. To restate this, the two-
dimensional array artist is large enough to hold 
up to 5,000 artist names, each of which can be up to 
255 characters long, not including the terminating 
byte.

multiArray.xcode
Here’s a sample program that brings this concept 
to life. multiArray defines the two dimensional 
array title (as described above), prompts you to 
type in a series of CD titles, stores the titles in the 
two-dimensional title array, then prints out the 
contents of title.

Open the Learn C Projects folder, go inside the folder 
09.0 - multiArray, and open the project multiArray.
xcode. Run multiArray by selecting Build and Run 
from the Build menu. multiArray will first tell 
you how many bytes of memory are allocated for the 
entire title array:
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The artist array takes up 1024 bytes of 
memory.

To see where this number came from, here’s the 
declaration of title from MultiArray:

#define kMaxCDs   4
#define kMaxTitleLength  256

char title[ kMaxCDs ][ kMaxTitleLength ];

By performing the #define substitution yourself, 
you can see that title is defined as a 4 by 256 array. 
4 times 256 is ,024, matching the result reported by 
multiArray.

After multiArray reports the title array size, it 
enters a loop, prompting you for your list of favorite 
musical artists:

Title of CD #1:

Enter a CD title, then hit a return. You’ll be prompted 
to enter a second CD title. Type in a total of 4 CD 
titles, hitting a return at the end of each one. 

multiArray will then step through the array, using 
printf() to list the CDs you’ve entered. In case 
your entire music collection consists entirely of a 
slightly warped vinyl copy of Leonard Nimoy singing 

some old Dylan classics, feel free to use my list, 
shown in Figure 9..

Let’s take a look at the source code.

Figure 9. multiArray in action.

Stepping Through the Source Code
main.c starts off with a standard #include. 
<stdio.h> gives us access to both printf() 
and fgets(). fgets() reads a line of text from 
console’s input buffer (also known as stdin).

#include <stdio.h>



181

Chapter 9:  
Design Your Own 
Data Structures

Back in the olden days, before black hat hackers, 
when everyone was nice and good, programmers 
used a function called gets() to read data from the 
console. The problem is, gets() uses a finite buffer 
to store a potentially infinite amount of input. For 
example, suppose you declared a 256-byte array for 
gets() to use to capture the user’s input. If all you 
were asking for was an artist name, 256 bytes should 
be plenty, right?

Suppose the user types in 300 bytes? Since you send 
gets() a pointer to a buffer, the extra characters 
will be written right off the end of the array, perhaps 
writing over some other variables, perhaps trashing 
the program itself.

Our replacement function, fgets(), allows you to 
specify a limit on how many characters it can read 
in. By limiting fgets() to the actual length of the 
buffer you pass it, you avoid the problem of buffer 
overflow. The concept of buffer overflow is extremely 
important. Keep it in mind as you design your own 
programs.

If you look up gets() in the Standard Library 
documentation, you’ll see the notation that you 
should not use gets() because of the potential for 
buffer overflow. Check this out for yourself:

http://www.infosys.utas.edu.au/info/
documentation/C/CStdLib.html

Here’s an interesting article on buffer overflows, 
as used by black hat hackers to attack individual 
computers and the internet itself:

http://www.networkmagazine.com/article/
NMG20000511S0015

These two #defines will be used throughout the 
code:

#define kMaxCDs   4
#define kMaxTitleLength  256

Here’s the function prototypes for 
PrintCDTitle(). PrintCDTitle() will prints 
out the specified CD title.

void PrintCDTitle( int cdNum,
char title[][ kMaxTitleLength ] );

main() starts off by defining title, our two-
dimensional array. title is large enough to hold 4 
artists. The name of each artist can be up to 255 bytes 
long, plus the zero terminating byte.

int main (int argc, const char * argv[])
{
 char title[ kMaxCDs ][ 
kMaxTitleLength ];

http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html
http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html
http://www.networkmagazine.com/article/NMG20000511S0015
http://www.networkmagazine.com/article/NMG20000511S0015
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Notice anything different about the declaration of 
title in the PrintCDTitle() prototype 
and the declaration of title in main()? More 
on that in a bit.

cdNum is a counter used to step through each of the 
CD titles in a for loop.

 short cdNum;

result is a pointer to a char, also known as a 
char-star. Though we don’t make use of it, result 
captures the value returned by fgets(). If you 
call a function that returns a value, be sure you are 
prepared to capture the result in a variable of the 
appropriate type, even if you never intend to use that 
returned value.

 char *result;

This printf() prints out the size of the title 
array. Notice that we’ve used the %ld format 
specifier to print the result returned by sizeof. 
%ld indicates that the type you are printing is the 
size of a long, which is true for size_t, the type 
returned by sizeof. If you use %ld, you won’t need 
the (int) typecast we used in earlier programs.

 printf( “The artist array takes up %ld bytes 
of memory.\n\n”, 

    sizeof( title ) );

size_t is not guaranteed to be an unsigned 
long, though it usually is. The only guarantee is that 
size_t is the same size as that returned by the 
sizeof operator. In our case, size_t is defined as 
an unsigned long, so the “%ld” format specifier 
will work just fine.

Here’s the loop that reads in the title names. cdNum 
starts with a value of 0, is incremented by  each time 
through the loop, and stops as soon as cdNum is 
equal to kMaxCDs. Why “equal to kMaxCDs”? Since 
cdNum acts as an array index, it has to start with a 
value of 0. Since there are 4 elements in the array, 
they range in number from 0 to 3. If cdNum is equal 
to kMaxCDs, we need to drop out of the loop or we’ll 
be trying to access title[4], which does not exist. 
Make sense?

 for ( cdNum = 0; cdNum < kMaxCDs; cdNum++ )
 {

Each time through the loop, we first print out the 
prompt “Title of CD #”, followed by the value 
cdNum + 1. Though C starts its arrays with 0, in real 
life we start numbering things with . 
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  printf( “Title of CD #%d: “, cdNum + 1 );

Once the prompt is printed, we’ll call fgets() to 
read in a line of text from the console. We’ll store the 
line in the char array stored in title[ cdNum ]. 
We’ll tell fgets() to limit input to the length of 
that char array, which is kMaxTitleLength. The 
last parameter, stdin, tells fgets() to read its 
input from the console, as opposed to reading from a 
file.

  result = fgets( title[ cdNum ],   
   kMaxTitleLength, stdin );

 }

Take a look at the first parameter we passed to 
fgets():

title[ cdNum ]

What type is this parameter? Remember, title is a 
two-dimensional array, and a two-dimensional array 
is an array of arrays. title is an array of an array of 
chars. title[ cdNum ] is an array of chars, and 
thus exactly suited as a parameter to fgets().

Imagine an array of chars named blap:

char blap[ 100 ];

You’d have no problem passing blap as a parameter 
to fgets(), right? fgets() would read the 
characters from the input buffer and place them 
in blap. title[0] is just like blap. Both are 
pointers to an array of chars. blap[0] is the first 
char of the array blap. Likewise, title[0][0] 
is the first char of the array title[0].

OK, back to the code.

Once we drop out of the loop, we print a dividing 
line, then loop on a call to PrintCDTitle() to 
print the contents of our array of CD titles. The 
first parameter to PrintCDTitle() specifies the 
number of the CD you want printed. The second 
parameter is the title array pointer.

 printf( “----\n” );

 for ( cdNum = 0; cdNum < kMaxCDs; cdNum++ )
  PrintCDTitle( cdNum, title );

Finally, we return 0 and thus ends main().

 return 0;
}

Take a look at the definition of PrintCDTitle()’s 
second parameter. Notice that the first of the two 
dimensions is missing (the first pair of brackets 
is empty). While we could have included the first 
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dimension (kMaxCDs), the fact that we were able to 
leave it out makes a really interesting point. When 
memory is allocated for an array, it is allocated as one 
big block. To access a specific element of the array, 
the compiler uses the dimensions of the array, as 
well as the specific element requested to calculate an 
offset into this block.

void PrintCDTitle( int cdNum, char title[][ 
kMaxTitleLength ] )

{
 printf( “Title of CD #%d: %s\n”,
   cdNum + 1, title[ cdNum ] );
}

In the case of title, the compiler allocated a 
block of memory 4 * 256 = ,024 bytes long. Think 
of this block as 4 char arrays, each of which is 256 
bytes long. To get to the first byte of the first array, 
we just use the pointer that was passed in (title 
points to the first byte of the first of the 4 arrays). 
To access the first byte of the second array (in C 
notation, title[1][0]) the compiler adds 256 to 
the pointer title. In other words, the start of the 
second array is 256 bytes further in memory than 
the start of the first array. The start of the 4th array is 
3*256 = 768 bytes further in memory than the start of 
the first array.

While it is nice to know how to compute array offsets 
in memory, the point I’m going for here is that the 
compiler calculates the title array offsets using 

the second dimension and not the first dimension of 
title (256 is used, 4 is not used).

The compiler could use the first array bound (4) to 
verify that you don’t reference an array element that 
is out of bounds. For example, the compiler could 
complain if it sees this line of code:

title[5][0] = ‘\0’;

In this case, the compiler could tell you that you are 
trying to reference a memory location outside the 
block of memory allocated for title.

Guess what. C compilers don’t do bounds checking of 
any kind. If you want to access memory beyond the 
bounds of your array, no one will stop you. This is part 
of the “charm” of C. C gives you the freedom to write 
programs that crash in spectacular ways. Your job is to 
learn how to avoid such pitfalls.

Take another look at the printf() inside 
PrintCDTitle():

 printf( “Title of CD #%d: %s\n”,
   cdNum + 1, title[ cdNum ] );

Note the two format specifiers. The first, %d, is used 
to print the CD number. The second, %s, is used to 
print the CD title itself. The “\n” at the end of the 
string is used to force a carriage return between each 
of the CD titles.
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The more sharp-eyed among you may have noticed 
that there is an extra carriage return between each of 
the titles. To see this, flip back to Figure 9.1. Go ahead, 
I’ll wait.

As it turns out, fgets() captures the carriage 
return at the end of your input as part of the input 
string. This means each CD title has a “\n” embedded 
in it, just before the terminating 0. Not a big deal, but 
simple enough to fix, if you care to.

First, include this line of code with your other 
#include at the top of main.c:

#include <string.h>

After your call to fgets(), still inside the for loop, 
insert this line of code:

title[ cdNum ][ strlen( title[ cdNum ] 
) - 1 ] = ‘\0’;

Yikes!!! Take a few moments to digest this line of 
code. What we are doing is using the Standard Library 
function strlen() to determine the length of 
the current CD title. For example, if the title was 
Jamboree, strlen() would return 9, because of 
the extra “\n” character in the title.

We want to replace that “\n” with a 0. Note that we 
used the character ‘\0’, which has a value of 0. 
We could have used a 0 instead. So we subtract 1 
from 9 to get 8. Since strings start counting with 0, 
title[cdNum][8] is actually the 9th character in 
the string. By setting that to ‘\0’, we’ve replace the 
“\n” with a 0.

Now when you print, your extra carriage returns will 
be gone.

Wanna see something interesting? Take a look 
at the output shown in Figure 9.2. I shortened 
kMaxTitleLength to 0, recompiled, 
ran multiArray, then typed the digits 
123456789012345 as the title of the first CD.

 When I hit a return, fgets() read its limit of 9 
characters from the input buffer, saving one byte for 
the terminating 0. The remaining 6 characters and 
the trailing carriage return were read by fgets() 
the next time through the for loop and the program 
finished normally.

No big deal. When I return kMaxTitleLength to 
256, all is well again.
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Figure 9.2 This output is the result of a bug in the 
program. Take a look at the end of both lines labeled 
Title of CD #1.

Back to Model A
Back in the beginning of the chapter, we described 
a program that would track your CD collection. 
The goal was to look at two different approaches to 
solving the same problem. The first approach, Model 
A, uses three arrays to hold a rating, artist name and 
title for each CD in the collection:

#define kMaxCDs   5000
#define kMaxArtistLength  256
#define kMaxTitleLength  256

char rating[ kMaxCDs ];
char artist[ kMaxCDs ][ kMaxArtistLength ];
char title[ kMaxCDs ][ kMaxTitleLength ];

Before we move on to Model B, let’s take a closer 
look at the memory used by the Model A arrays. 

4The array rating uses 1 byte per CD (enough for 
a 1-byte rating from 1 to 10).

4The array artist uses 256 bytes per CD (enough 
for a text string holding the artist’s name, up to 
255 bytes in length, plus the terminating byte).

4The array title also uses 256 bytes per CD 
(enough for a text string holding the CD’s title, up 
to 255 bytes in length, plus the terminating byte).

Add those three together and you find that Model A 
allocates 53 bytes per CD. Since Model A allocates 
space for 5,000 CDs when it declares its three key 
arrays, it uses 5,000 * 53 = 2,565,000 bytes.
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Since the program really only needs 53 bytes per 
CD, wouldn’t it be nice if you could allocate the 
memory for a CD when you need it? With this type 
of approach, if your collection only consisted of 50 
CDs, you’d only have to use 50 * 53 = 25,650 bytes of 
memory instead of 2,565,000.

As you’ll see by the end of the chapter, C provides 
a mechanism for allocating memory as you need it. 
Model B takes a first step toward memory efficiency 
by creating a single data structure that contains all 
the information relevant to a single CD. Later in 
the chapter you’ll learn how to allocate just enough 
memory for a single structure.

Model B: The Data Structure 
Approach
As stated earlier, our CD program must keep track of 
a rating (from  to 0), the CD artist’s name, and the 
CD’s title:

#define kMaxCDs   5000
#define kMaxArtistLength  256
#define kMaxTitleLength  256

char rating[ kMaxCDs ];
char artist[ kMaxCDs ][ kMaxArtistLength ];
char title[ kMaxCDs ][ kMaxTitleLength ];

C provides the perfect mechanism for wrapping 
all three of these variables in one tidy bundle. A 
struct allows you to associate any number of 
variables together under a single name. Here’s an 
example of a struct declaration:

#define kMaxArtistLength  256
#define kMaxTitleLength  256

struct CDInfo
{
 char rating;
 char artist[ kMaxArtistLength ];
 char title[ kMaxTitleLength ];
}

This struct type declaration creates a new type called 
CDInfo. Just as you’d use a type like short or 
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float to declare a variable, you can use this new 
type to declare an individual struct. Here’s an 
example:

struct CDInfo myInfo;

This line of code uses the previous type declaration 
as a template to create an individual struct. The 
compiler uses the type declaration to tell it how 
much memory to allocate for the struct, then 
allocates a block of memory large enough to hold all 
of the individual variables that make up the struct.

The variables that form the struct are known as 
fields. A struct of type CDInfo has 3 fields:  a 
char named rating, an array of chars named 
artist, and an array of chars named title. To 
access the fields of a struct, use the “.” operator:

struct CDInfo myInfo;

myInfo.rating = 7;

Notice the . between the struct name (myInfo) 
and the field name (rating). The . following a 
struct name tells the compiler that a field name is 
to follow.

structSize.xcode
Here’s a program that demonstrates the declaration 
of a struct type, as well as the definition of an 
individual struct. Open the Learn C Projects 
folder, go inside the folder 09.02 - structSize, 
and open the project structSize.xcode. Run 
structSize.

Compare your output with the console window 
shown in Figure 9.3. They should be the same. 
The first three lines of output show the rating, 
artist, and title fields. To the right of each 
field name, you’ll find printed the number of bytes of 
memory allocated to that field. The last line of output 
shows the memory allocated to the entire struct.
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Figure 9.3 structSize shows the size of a CDInfo 
struct.

Stepping Through the Source Code
If you haven’t done so already, quit structSize 
and take a minute to look over the source code in 
main.c. Once you feel comfortable with it, read on.

main.c starts off with our standard #include along 
with a brand new one:

#include <stdio.h>
#include “structSize.h”

The angle-brackets (<>) that surrounds all the 
include files we’ve seen so far tell the compiler to 
look in the include file directories that it knows 

about. When you surround the include file name by 
double-quotes (“”) instead of angle-brackets, like 
those around “structSize.h” in this example, 
you are telling the compiler to look for this include 
file in the same folder as the including source code 
file.

Regardless of where it locates the include file, the 
compiler treats the contents of the include file as if it 
were actually inside the including file. In this case, the 
compiler treats <stdio.h> and “structSize.
h” as if they were directly inside main.c.

As you’ve already seen, C include files typically end 
in the two characters “.h”. Though you can give your 
include files any name you like, the “.h” convention 
is one you should definitely stick with. Include files 
are also known as header files, which is where the “h” 
comes from.

Let’s take a look at structSize.h. One way to do this is 
to select Open… from the File menu, navigate into 
the same directory as the structSize.xcode project, 
and select the file.

A simpler way to do this is to use Xcode’s include 
file popup menu, as shown in Figure 9.4. In the 
project window, look towards the right side of the 
window, just above the vertical scrollbar, for a popup 
menu whose label is in the shape of a #. Click on the 
popup and select structSize.h from the menu. A new 
window will open containing structSize.h.
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Figure 9.4 Selecting an include file from Xcode’s include 
file popup.

Include files typically contain things like #defines, 
global variables, and function prototypes. By 
embedding these things in an include file, you 
declutter your source code file and, more importantly, 
you make this common source code available to 
other source code files via a single #include.

structSize.h starts off with two #defines you’ve 
seen before.

#define kMaxArtistLength 256
#define kMaxTitleLength 256

Next comes the declaration of the struct type, 
CDInfo:

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
 char rating;
 char artist[ kMaxArtistLength ];
 char title[ kMaxTitleLength ];
};

By including the header file at the top of the file 
(where we might place our globals), we’ve made 
the CDInfo struct type available to all of the 
functions inside main.c. If we placed the CDInfo 
type declaration inside of main() instead, our 
program would still have worked (as long as we 
placed it before the definition of myInfo), but we 
would then not have access to the CDInfo type 
outside of main().

That’s all that was in the header file structSize.
h. Back in main.c, main() starts by defining a 
CDInfo struct named myInfo. myInfo has 3 
fields, myInfo.rating, myInfo.artist, and 
myInfo.title.

int main (int argc, const char * argv[])
{
 struct CDInfo myInfo;

The next three statements print the size of the three 
myInfo fields. Notice that we are again using the 
%ld format specifier to print the value returned by 
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sizeof.

 printf( “rating field:     %ld byte\n”,
   sizeof( myInfo.rating ) );
 
 printf( “artist field:   %ld bytes\n”,
   sizeof( myInfo.artist ) );
 
 printf( “title field:    %ld bytes\n”,
   sizeof( myInfo.title ) );

This next printf() prints a separator line, purely 
for aesthetics. Notice the way everything lines up in 
Figure 9.3?

 printf( “               ---------\n” );

Finally, we print the total number of bytes allocated 
to the struct. Do the numbers add up? They should!

 printf( “myInfo struct: %ld bytes”,
   sizeof( myInfo ) );
 
 return 0;
}

As it turns out, there are some computers where the 
numbers will not add up. Here’s why. Some computers 
have rules they follow to keep various data types 
lined up a certain way. For example, on old 680x0 
machines, the compiler forces all data larger than a 
char to start on an even-byte boundary (at an even 
memory address). A long will always start at an 
even address. A short will always start at an even 
address. A struct, no matter its size, will always 
start at an even address. Conversely, a char or array 
of chars can start at either an odd or even address. 
In addition, on a 680x0 machine, a struct must 
always have an even number of bytes.

In our example, the three struct fields are all either 
chars or arrays of chars, so they are all allowed to 
start at either an odd or even address. The three fields 
total to 103 bytes. Since a struct on a 680x0 must 
always have an even number of bytes, the compiler 
adds an extra byte (known as padding or a pad byte) 
at the end of the struct.

You might never see an example of this, but it is 
worth remembering that data alignment rules are 
not specific to the C language and can vary from CPU 
type to CPU type. When in doubt, write some code 
and try it out.
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Passing a Struct as a Parameter
Think back to the CD tracking program we’ve been 
discussing throughout the chapter. We started off 
with three separate arrays, each of which tracked a 
separate element. One array stored the rating field, 
another stored the CD artist, and the third stored the 
title of each CD.

We then introduced the concept of a structure that 
would group all the elements of one CD together, in 
a single struct. One advantage of a struct is that 
you can pass all the information about a CD using a 
single pointer. Imagine a routine called PrintCD(), 
designed to print the three elements that describe a 
single CD. Using the original array-based model, we’d 
have to pass three parameters to PrintCD():

void PrintCD( char rating, char *artist, char 
*title )

{
 printf(“rating: %d\n”, rating );
 printf(“artist: %s\n”, artist );
 printf(“title: %s\n”, title );
}

Using the struct-based model, however, we could 
pass the info using a single pointer. As a reminder, 
here’s the CDInfo struct declaration again:

#define kMaxArtistLength  256
#define kMaxTitleLength  256

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
 char rating;
 char artist[ kMaxArtistLength ];
 char title[ kMaxTitleLength ];
};

This version of main() defines a CDInfo 
struct and passes its address to a new version of 
PrintCD() (we’ll get to it next).

int main (int argc, const char * argv[])
{
 struct CDInfo myInfo;

 PrintCD( &myInfo );

 return 0;
}

Just as has been the case in earlier programs, passing 
the address of a variable to a function gives that 
function the ability to modify the original variable. 
Passing the address of myInfo to PrintCD() gives 
PrintCD() the ability to modify the three myInfo 
fields. Though our new version of PrintCD() 
doesn’t modify myInfo, it’s important to know that 
that opportunity exists. Here’s the new, struct-
based version of PrintCD():
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void PrintCD( struct CDInfo *myCDPtr )
{
 printf( “rating: %d\n”, (*myCDPtr).rating );
 printf( “artist: %s\n”, myCDPtr->artist );
 printf( “title: %s\n”, myCDPtr->title );
}

Notice that PrintCD() receives its parameter as a 
pointer to (i.e., the address of ) a CDInfo struct. 
The first printf() uses the * operator to turn the 
struct pointer back to the struct it points to, 
then uses the . operator to access the rating field:

(*myCDPtr).rating

C features a special operator, ->, that lets you 
accomplish the exact same thing. The -> operator 
is binary. That is, it requires both a left and right 
operand. The left operand is a pointer to a struct, 
and the right operand is the struct field. The 
notation:

myCDPtr->artist

is exactly the same as:

(*myCDPtr).rating

Use whichever form you prefer. In general, most 

C programmers use the -> operator to get from a 
struct’s pointer to one of the struct’s fields.

Passing a Copy of the Struct
Here’s a version of main() that passes the struct 
itself, instead of its address:

int main (int argc, const char * argv[])
{
 struct CDInfo myInfo;

 PrintCD( myInfo );
}

As always, when the compiler encounters a function 
parameter, it passes a copy of the parameter to 
the receiving routine. The previous version of 
PrintCD() received a copy of the address of a 
CDInfo struct.

In this new version of PrintCD(), the compiler 
passes a copy of the entire CDInfo struct, not 
just a copy of its address. This copy of the CDInfo 
struct includes copies of the rating field, and 
the artist and title arrays.

void PrintCD( struct CDInfo myCD )
{
 printf( “rating: %d\n”, myCD.rating );
 printf( “artist: %s\n”, myCD.artist );
 printf( “title: %s\n”, myCD.title );

}
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When a function exits, all of its local variables (except 
for static variables, which we’ll cover in chapter 11) 
are no longer available. This means that any changes 
you make to a local parameter are lost when the 
function returns. If this version of PrintCD() made 
changes to its local copy of the CDInfo struct, 
those changes would be lost when PrintCD() 
returned.

Sometimes you’ll want to pass a copy of a struct. 
One advantage this technique offers is that there’s 
no way that the receiving function can modify the 
original struct. Another advantage is that it offers 
a simple mechanism for making a copy of a struct. 
A disadvantage of this technique is that copying a 
struct takes time and uses memory. Though time 
won’t usually be a problem, memory usage might be, 
especially if your struct gets pretty large. Just be 
aware that whatever you pass as a parameter is going 
to get copied by the compiler. Pass a struct as a 
parameter, the compiler will copy the struct. Pass 
a pointer to a struct, the compiler will copy the 
pointer.

paramAddress.xcode
There’s a sample program in the Learn C 
Projects folder, inside a subfolder named 09.03 - 
paramAddress, that should help show the difference 
between passing the address of a struct and 
passing a copy of the struct. Open and run 
paramAddress.xcode.

main() defines a CDInfo struct named myCD, 
then prints the address of myCD’s rating field:

 printf( “Address of myCD.rating in main():               
%p\n”,

   &(myCD.rating) );

Notice that we print an address using the %p format 
specifier. The p stands for pointer. This is the proper 
way to print an address in C. Here’s the output of this 
printf():

Address of myCD.rating in main():               
0xbffffba0

Next, main() passes the address of myCD as well 
as myCD itself as parameters to a routine named 
PrintParamInfo():

PrintParamInfo( &myCD, myCD );

Here’s the prototype for PrintParamInfo():

void PrintParamInfo( struct CDInfo *myCDPtr,
    struct CDInfo myCDCopy );

The first parameter is a pointer to main()’s myCD 
struct. The second parameter is a copy of the same 
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struct. PrintParamInfo() prints the address 
of the rating field of each version of myCD:

 printf( “Address of myCDPtr->rating in 
PrintParamInfo(): %p\n”,

   &(myCDPtr->rating) );
 printf( “Address of myCDCopy.rating in 
PrintParamInfo(): %p\n”,

   &(myCDCopy.rating) );

Here are the results, including the line of output 
generated by main():

Address of myCD.rating in main():               
0xbffffba0

Address of myCDPtr->rating in 
PrintParamInfo(): 0xbffffba0

Address of myCDCopy.rating in 
PrintParamInfo(): 0xbffffb2c

Notice that the rating field accessed via a pointer 
has the same address as the original rating field in 
main()’s myCD struct. If PrintParamInfo() 
uses the first parameter to modify the rating field, 
it will, in effect, be changing main()’s rating field.

If PrintParamInfo() uses the second parameter 
to modify the rating field, main()’s rating field 
will remain untouched.

By the way, most programmers use hexadecimal 
notation (hex for short) when they print addresses. 
Hex notation represents numbers as base 16 instead 
of the normal base 10 you are used to. Instead of the 
ten digits 0 through 9, hex features the 16 digits 0, 
1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, and f. Each digit of a 
number represents a successive power of 16 instead 
of successive powers of 10.

For example, the number 532 in base 10 is equal 
to 5*102 + 3*101 + 2*100 = 5*100+3*10+2*1. The 
number 532 in hex is equal to 5*162 + 3*161 + 2*160 = 
5*256+3*16+2*1 = 1330 in base 10. The number ff in hex 
is equal to 15*16 + 15*1 = 255 in base 10. Remember, 
the hex digit f has a decimal (base 10) value of 15.

To represent a hex constant in C, preceded it by the 
characters “0x”. The constant 0xff has a decimal 
value of 255. The constant 0xFF also has a decimal 
value of 255. C doesn’t distinguish between upper and 
lower case when representing hex digits.

Struct Arrays
Just as you can declare an array of chars or ints, 
you can also declare an array of structs:

#define kMaxCDs 5000

struct CDInfo myCDs[ kMaxCDs ];

This declaration creates an array of 5,000 structs 
of type CDInfo. The array is named myCDs. Each 
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of the 5,000 structs will have the three fields 
rating, artist, and title. You access the 
fields of the structs as you might expect. Here’s 
an example (Note the use of the all-important . 
operator):

myCDs[ 10 ].rating = 9;

We now have an equivalent to our first CD tracking 
data structure. Where the first model used three 
arrays, we now have a solution that uses a single 
array. As you’ll see when you start writing your own 
programs, packaging your data in a struct makes 
life a bit simpler. Instead of passing three parameters 
each time you need to pass a CD to a function, you 
can simply pass a struct.

From a memory standpoint, both CD tracking 
solutions cost the same. With three separate arrays, 
the cost is:

                  5,000 bytes /*rating array*/
5,000 * 256 = 1,280,000 bytes /*artist array*/
5,000 * 256 = 1,280,000 bytes /*title array*/
              ---------------
Total         2,565,000 bytes

With an array of structs, the cost is:

5,000 * 513 = 2,565,000 bytes /* Cost of 
array of 5,000 CDInfo structs */

So what can we do to cut this memory cost down? 
Thought you’d never ask!
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Allocating Your Own Memory
One of the limitations of an array-based CD-tracking 
model is that arrays are not resizable. When you 
define an array, you have to specify exactly how many 
elements make up your array.

For example, this code defines an array of 5,000 
CDInfo structs.

#define kMaxCDs 5000

struct CDInfo myCDs[ kMaxCDs ];

As we calculated earlier, this array will take up 
2,565,000 bytes of memory, whether we use the 
array to track  CD or 5,000. If you know in advance 
exactly how many elements your array requires, 
arrays are just fine. In the case of our CD-tracking 
program, this just isn’t practical. For example, if my 
CD collection consists entirely of a test CD that came 
with my CD burner and a rare soundtrack recording 
of Gilligan’s Island outtakes, a 5,000 struct array 
is overkill. Even worse, what happens if I’ve got more 
than 5,000 CDs? No matter what number I pick for 
kMaxCDs, there’s always the chance that it won’t 
prove large enough.

The problem here is that arrays are just not flexible 
enough to do what we want. Instead of trying to 
predict the amount of memory we’ll need in advance, 
what we need is a method that will give us a chunk of 
memory the exact size of a CDInfo struct, as we 

need it. In more technical terms, we need to allocate 
and manage our own memory.

When your program starts running, your operating 
system (Mac OS X, Unix, and Windows XP are all 
examples of operating systems) carves out a chunk of 
memory for the exclusive use of your application.

Some of this memory is used to hold the object 
code that makes up your application. Still more 
of it is used to hold things like your application’s 
global variables. As your application runs, some of 
this memory will be allocated to main()’s local 
variables. When main() calls a function, memory 
is allocated for that function’s local variables. When 
that function returns, the memory allocated for 
its local variables is freed up, made available to be 
allocated all over again.

In the next few sections, you’ll learn about some 
functions you can call to allocate a block of memory 
and to free the memory (to return it to the pool of 
available memory). Ultimately, we’ll combine these 
functions with a data structure called a linked list 
to provide a more memory efficient, more flexible 
alternative to the array.

malloc()
The Standard Library function malloc() allows 
you to to allocate a block of memory of a specified 
size. To access malloc(), you’ll need to include the 
file <stdlib.h>:
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#include <stdlib.h>

malloc() takes a single parameter, the size of 
the requested block, in bytes. malloc() returns 
a pointer to the newly allocated block of memory. 
Here’s the function prototype:

void *malloc( size_t size );

Note that the parameter is declared to be of type 
size_t, the same type returned by sizeof. Think 
of size_t as equivalent to an unsigned long 
(unsigned in that it only takes on positive values, 
and the size of a long). Note also that malloc() 
returns the type (void *), a pointer to a void. A 
void pointer is essentially a generic pointer. Since 
there’s no such thing as a variable of type void, the 
type (void *) is used to declare a pointer to a block 
of memory whose type has not been determined.

In general, you’ll convert the (void *) returned by 
malloc() to the pointer type you really want. Read 
on to see an example of this.

If malloc() can’t allocate a block of memory the 
size you requested, it returns a pointer with the value 
NULL. NULL is a constant, usually defined to have a 
value of 0, used to specify an invalid pointer. In other 
words, a pointer with a value of NULL does not point 

to a legal memory address. You’ll learn more about 
NULL and (void *) as we use them in our examples.

Here’s a code fragment that allocates a single 
CDInfo struct:

struct CDInfo *myCDPtr;
 
myCDPtr = malloc( sizeof( struct CDInfo ) );

The first line of code declares a new variable, 
myCDPtr, which is a pointer to a CDInfo 
struct. At this point, myCDPtr doesn’t point to 
a CDInfo struct. You’ve just told the compiler 
that myCDPtr is designed to point to a CDInfo 
struct.

The second line of code calls malloc() to create 
a block of memory the size of a CDInfo struct. 
sizeof returns its result as a size_t, the type 
we need to pass as a parameter to malloc(). How 
convenient!
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On the right side of the = operator we’ve got a 
(void *) and on the left side we’ve got a (struct 
CDInfo *). The compiler automatically resolves this 
type difference for us. We could have used a typecast 
here to make this more explicit:

myCDPtr = (struct CDInfo *)malloc( 
sizeof(struct CDInfo) );

This explicit typecast really isn’t necessary and, 
besides, we won’t get into typecasting until Chapter 
11!

If malloc() was able to allocate a block of memory 
the size of a CDInfo struct, myCDPtr contains 
the address of the first byte of this new block. If 
malloc() was unable to allocate our new block 
(perhaps there wasn’t enough unallocated memory 
left) myCDPtr will be set to NULL.

if ( myCDPtr == NULL )
 printf( “Couldn’t allocate the new block!\n” 
);

else
 printf( “Allocated the new block!\n” );

If malloc() succeeded, myCDPtr points to a 
struct of type CDInfo. For the duration of the 
program, we can use myCDPtr to access the fields of 
this newly allocated struct:

myCDPtr->rating = 7;

It is important to understand the difference between 
a block of memory allocate using malloc() and a 
block of memory that corresponds to a local variable. 
When a function declares a local variable, the 
memory associated with that variable is temporary. 
As soon as the function exits, the block of memory 
associated with that memory is returned to the pool 
of available memory.

A block of memory that you allocate using 
malloc() sticks around until you specifically 
return it to the pool of available memory or until 
your program exits.

free()
The Standard Library provides a function, called 
free(), which returns a previously allocated block 
of memory back to the pool of available memory. 
Here’s the function prototype:

void free( void *ptr );

free() takes a single argument, a pointer to the 
first byte of a previously allocated block of memory. 
This line:

free( myCDPtr );

returns the block allocated earlier to the free memory 
pool. Use malloc() to allocate a block of memory. 
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Use free() to free up a block of memory allocated 
via malloc(). When a program exits, the operating 
system automatically frees up all memory allocated 
by that program.

Caution:  Never put a fork in an electrical outlet. Never 
pass an address to free() that didn’t come from 
malloc(). Both will make you extremely unhappy!

Keep Track of That Address!
The address returned by malloc() is critical. If you 
lose it, you’ve lost access to the block of memory you 
just allocated. Even worse, you can never free() 
the block, and it will just sit there, wasting valuable 
memory, for the duration of your program.

One great way to lose a block’s address is to call 
malloc() inside a function, saving the address 
returned by malloc() in a local variable. When the 
function exits, your local variable goes away, taking 
the address of your new block with it!

One way to keep track of a newly allocated block of 
memory is to place the address in a global variable. 
Another way is to place the pointer inside a special 
data structure known as a linked list.

Working With Linked Lists
The linked list is one of the most widely used data 
structures in C. A linked list is a series of structs, 
each of which contains, as a field, a pointer. Each 
struct in the series uses its pointer to point to the 
next struct in the series. Figure 9.5 shows a linked 
list containing three elements.

Master
Pointer

Figure 9.5 A linked list containing 3 elements.

A linked list starts with a master pointer. The master 
pointer is a pointer variable, typically a global, that 
points to the first struct in the list. This first 
struct contains a field, also a pointer, which points 
to the second struct in the linked list. The second 
struct contains a pointer field that points to the 
third element. The linked list in Figure 9.5 ends 
with the third element. The pointer field in the last 
element of a linked list is typically set to NULL.

The notation used at the end of the linked list in 
Figure 9.5 is borrowed from our friends in electrical 
engineering. The funky three line symbol at the end 
of the last pointer represents a NULL pointer.
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Why Linked Lists?
Linked lists allow you to be extremely memory 
efficient. Using a linked list, you can implement our 
CD-tracking data structure, allocating exactly the 
number of structs that you need. Each time a 
CD is added to your collection, you’ll allocate a new 
struct and add it to the linked list.

A linked list starts out as a single master pointer. 
When you want to add an element to the list, call 
malloc() to allocate a block of memory for the 
new element. Next, make the master pointer point 
to the new block. Finally, set the new block’s next 
element pointer to NULL.

Creating a Linked List
The first step in creating a linked list is the design 
of the main link, the linked list struct. Here’s a 
sample:

#define kMaxArtistLength  256
#define kMaxTitleLength  256

struct CDInfo
{
 char  rating;
 char  artist[ kMaxArtistLength ];
 char  title[ kMaxTitleLength ];
 struct CDInfo *next;
}

The change here is the addition of a fourth field, a 

pointer to a CDInfo struct. The next field is the 
key to connecting two different CDInfo structs 
together. If myFirstPtr is a pointer to one 
CDInfo struct and mySecondPtr is a pointer to 
a second struct, this line:

myFirstPtr->next = mySecondPtr;

connects the two structs together. Once they are 
connected, you can use a pointer to the first struct 
to access the second struct’s fields!  For example:

myFirstPtr->next->rating = 7;

This line sets the rating field of the second 
struct to 7. Using the next field to get from one 
struct to the next is also known as traversing a 
linked list.

Our next (and final) program for this chapter will 
incorporate the new version of the CDInfo struct 
to demonstrate a more memory-efficient CD-
tracking program. This program is pretty long, so you 
may want to take a few moments to let the dog out 
and answer your mail.
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There are many variants of the linked list. If you 
connect the last element of a linked list to the first 
element, you create a never-ending circular list. You 
can add a prev field to the struct and use it to 
point to the previous element in the list (as opposed 
to the next one). This technique allows you to traverse 
the linked list in two directions and creates a doubly-
linked list. 

As you gain more programming experience, you’ll 
want to check out some books on data structures. 
Three books well worth exploring are Algorithms in C, 
Parts 1-5 by Robert Sedgewick, Data Structures and C 
Programs by Christopher J. Van Wyk and, my personal 
favorite, Volume 1 of Donald Knuth’s Computer 
Science Series (subtitled Fundamental Algorithms).

cdTracker.xcode
cdTracker implements Model B of our CD-
tracking system. It uses a text-based menu, allowing 
you to quit, add a new CD to the collection, or list all 
of the currently tracked CDs.

Open the Learn C Projects folder, go inside the folder 
09.04 - cdTracker, and open the project cdTracker.
xcode. Run cdTracker. The console window will 
appear, showing the prompt:

Enter command (q=quit, n=new, l=list):

At this point you have three choices. You can type a 

q, followed by a carriage return, to quit the program. 
You can type an n, followed by a carriage return, to 
add a new CD to your collection. Finally, you can 
type an l, followed by a carriage return, to list all the 
CDs in your collection.

Start by typing an l, followed by a carriage return. 
You should see the message:

No CDs have been entered yet...

Next, the original command prompt should 
reappear:

Enter command (q=quit, n=new, l=list):

This time type an n, followed by a carriage return. 
You will be prompted for the artist’s name and the 
title of a CD you’d like added to your collection:

Enter Artist’s Name:  Frank Zappa
Enter CD Title:  Anyway the Wind Blows

Next, you’ll be prompted for a rating for the new CD. 
The program expects a number between  and 0. 
Try typing something unexpected, such as the letter 
x, followed by a carriage return:
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Enter CD Rating (1-10):  x
Enter CD Rating (1-10):  10

The program checks your input, discovers it isn’t 
in the proper range, and repeats the prompt. This 
time, type a number between  and 0, followed by a 
carriage return. The program returns you to the main 
command prompt:

Enter command (q=quit, n=new, l=list):

Type the letter l, followed by a carriage return. The 
single CD you just entered will be listed and the 
command prompt will again be displayed:

Artist:  Frank Zappa
Title:   Anyway the Wind Blows
Rating:  10

----------
Enter command (q=quit, n=new, l=list):

Type an n, followed by a carriage return and enter 
another CD. Repeat the process one more time, 
adding a third CD to the collection. Now enter the 
letter l, followed by a carriage return to list all three 
CDs. Here’s my list:

Enter command (q=quit, n=new, l=list):  l

----------
Artist:  Frank Zappa
Title:   Anyway the Wind Blows
Rating:  10

----------
Artist:  Duke Ellington
Title:   Never No Lament
Rating:  8

----------
Artist:  Jane Siberry
Title:   Bound by the Beauty
Rating:  9

----------
Enter command (q=quit, n=new, l=list):

Finally, enter a q, followed by a carriage return to 
quit the program. Let’s hit the source code.

Stepping Through the Source Code
main.c starts by including four different files. 
<stdio.h> gives us access to routines like 
printf(), getchar(), and fgets(). 
<stdlib.h> gives us access to malloc() 
and free(). <string.h> gives us access to 
strlen().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
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The third include file is our own “cdTracker.h”. 
“cdTracker.h” starts off with three #defines 
that you should know pretty well by now.

/***********/
/* Defines */
/***********/
#define kMaxArtistLength  256
#define kMaxTitleLength  256

As you make your way through the cdTracker 
source code, you’ll notice we’ve added some 
decorative comments used to mark the beginning 
of a section of code. For example, in cdTracker.h, 
we’ve added comments to mark off areas for defines, 
struct declarations, and function prototypes.

In main.c, we’ve done something similar to set off 
the beginning of each function. You should do this in 
your own code. It’ll make your code easier to read.

Next comes the new and improved CDInfo 
struct declaration.

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
 char  rating;
 char  artist[ kMaxArtistLength ];
 char  title[ kMaxTitleLength ];
 struct CDInfo *next;

} *gFirstPtr, *gLastPtr;

Notice the two variables hanging off the end of this 
struct declaration. This is a shorthand declaration 
of two globals, each of which is a pointer to a 
CDInfo struct. We’ll use these two globals to 
keep track of our linked list.

gFirstPtr will always point to the first struct 
in the linked list. gLastPtr will always point to the 
last struct in the linked list. We’ll use gFirstPtr 
when we want to step through the linked list, starting 
at the beginning. We’ll use gLastPtr when we 
want to add an element to the end of the list. As long 
as we keep these pointers around, we’ll have access to 
the linked list of memory blocks we’ll be allocating.



205

Chapter 9:  
Design Your Own 
Data Structures

We could have split this declaration into two parts, 
like this:

struct CDInfo

{

char   rating;

char   artist[ kMaxArtistLength + 1 ];

char   title[ kMaxTitleLength + 1 ];

struct CDInfo   *next;

};

struct CDInfo

*gFirstPtr, *gLastPtr;

Either form is fine, though the shorthand version 
in cdTracker.h does a better job of showing that 
gFirstPtr and gLastPtr belong with the 
CDInfo struct declaration.

cdTracker.h ends with a series of function prototypes:

/***********************/
/* Function Prototypes */
/***********************/
char   GetCommand( void );
struct CDInfo *ReadStruct( void );
void  AddToList( struct CDInfo *curPtr );
void   ListCDs( void );
void   Flush( void );

Let’s get back to main.c. main() defines a char 
named command which will be used to hold the 
single-letter command typed by the user.

/*********************************************
***> main <*/

int main (int argc, const char * argv[])
{
 char   command;

Next, the variables gFirstPtr and gLastPtr 
are set to a value of NULL. As defined earlier, NULL 
indicates that these pointers do not point to valid 
memory addresses. Once we add an item to the list, 
these pointers will no longer be NULL.

 gFirstPtr = NULL;
 gLastPtr = NULL;

Next, main() enters a while loop, calling the 
function GetCommand(). GetCommand() 
prompts you for a one-character command, either a 
‘q’, ‘n’, or ‘l’. Once GetCommand() returns 
a ‘q’, we drop out of the while loop and exit the 
program.

 while ( (command = GetCommand() ) != ‘q’ )
 {
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If GetCommand() returns an ‘n’, the user 
wants to enter information on a new CD. First we 
call ReadStruct(), which allocates space for a 
CDInfo struct, then prompts the user for the 
information to place in the new struct’s fields. 
Once the struct is filled out, ReadStruct() 
returns a pointer to the newly allocated struct.

The pointer returned by ReadStruct() is passed 
on to AddToList(), which adds the new struct 
to the linked list.

  switch( command )
  {
   case ‘n’:
    AddToList( ReadStruct() );
    break;

If GetCommand() returns an ‘l’, the user wants 
to list all the CDs in his or her collection. That’s what 
the function ListCDs() does.

   case ‘l’:
    ListCDs();
    break;
  }
 }

Before the program exits, it says “Goodbye...”.

 printf( “Goodbye...” );

 
 return 0;
}

Next up on the panel is GetCommand(). 
GetCommand() declares a char named command, 
used to hold the user’s command.

/*****************************************> 
GetCommand <*/

char GetCommand( void )
{
 char command;

Because we want to execute the body of this next 
loop at least once, we used a do loop instead of a 
while loop. We’ll first prompt the user to enter a 
command, then use scanf() to read a character 
from the input buffer. The function Flush() will 
read characters, one at a time, from the input buffer 
until it reads in a carriage return. If we didn’t call 
Flush(), any extra characters we typed after the 
command (including the ‘\n’) would be picked up 
the next time through this loop and extra prompt 
lines would appear, one per extra character. To see 
this effect, comment out the call to Flush() and 
type more than one character when prompted for a 
command.
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 do 
 {
  printf( “Enter command (q=quit, n=new, 
l=list):  “ );

  scanf( “%c”, &command );
  Flush();
 }
 while ( (command != ‘q’) && (command != ‘n’)
     && (command != ‘l’) 
);

We’ll drop out of the loop once we get either a ‘q’, 
an ‘n’, or an ‘l’. 

Here’s a cool trick Keith Rollin (C guru extraordinaire) 
showed me. Instead of ending the do loop with this 
statement:

while ( (command != ‘q’) && (command != 
‘n’) && (command != ‘l’) );

try this code instead:

while ( ! strchr( “qnl”, command ) );

strchr() takes two parameters: a 0 terminated 
string and an int containing a character. It searches 
the string for the character and returns a pointer to 
the character inside the string, if it was found. If the 
character wasn’t in the string, strchr() returns 
NULL. Pretty cool, eh?

Once we drop out of the loop, we’ll print a separator 
line and return the single-letter command.

 printf( “\n----------\n” );
 return( command );
}

Next up is ReadStruct(). Notice the unusual 
declaration of the function name.

/*****************************************> 
ReadStruct <*/

struct CDInfo *ReadStruct( void )
{

This line says that ReadStruct() returns a pointer 
to a CDInfo struct:

struct CDInfo *ReadStruct( void )

ReadStruct() uses malloc() to allocate a 
block of memory the size of a CDInfo struct. The 
variable infoPtr will act as a pointer to the new 
block. We’ll use the variable num to read in the rating 
which we’ll eventually store in infoPtr->rating. 
result is a dummy variable we’ll never really make 
use of. It exists because we needed a variable to catch 
the value returned by fgets(). Since fgets() 
also puts the same value in one of its parameters, we 
won’t need the value returned to result.
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 struct CDInfo *infoPtr;
 int   num;
 char  *result;

ReadStruct() calls malloc() to allocate a 
CDInfo struct, assigning the address of the block 
returned to infoPtr.

 infoPtr = malloc( sizeof( struct CDInfo ) );

If malloc() cannot allocate a block of the 
requested size, it will return a value of NULL. If this 
happens, we’ll print an appropriate message and call 
the Standard Library function exit(). As its name 
implies, exit() causes the program to immediately 
exit.

 if ( infoPtr == NULL )
 {
  printf( “Out of memory!!!  Goodbye!\n” );
  exit( 0 );
 }

The parameter you pass to exit() will be passed 
back to the operating system (or to whatever 
program launched your program).

If we’re still here, malloc() must have succeeded. 
Next, we’ll print a prompt for the CD artist’s name, 

then call fgets() to read a line from the input 
buffer. fgets() will place the line in the artist 
field of the newly allocated struct.

 printf( “Enter Artist’s Name:  “ );
 result = fgets( infoPtr->artist, 
kMaxArtistLength, stdin );

Earlier in the chapter (in multiArray), we 
discovered that fgets() leaves the ‘\n’ in place 
when it reads in a line of input. In this next line, we 
use strlen() and the = operator to replace the ‘\
n’ with a terminating ‘\0’.

As a reminder of how this works, imagine that the 
line typed in was “hello”, with a carriage return 
acting as the sixth character in the string. This means 
that infoPtr->artist[5] is the character that 
needs to be replaced.

In this case, strlen( infoPtr->artist ) returns 6 (the 
characters “hello”plus the ‘\n’). We subtract 
 to get 5. Now we’ll use the = operator to replace 
the ‘\n’ at infoPtr->artist[5] with a 
terminating ‘\0’.

 infoPtr->artist[ strlen( infoPtr->artist ) - 
1 ] = ‘\0’;

We then repeat the process to prompt for and read in 
the CD title.
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 printf( “Enter CD Title:  “ );
 result = fgets( infoPtr->title, 
kMaxTitleLength, stdin );

 infoPtr->title[ strlen( infoPtr->title ) - 1 
] = ‘\0’;

This loop prompts the user to enter a number 
between  and 0. We then use scanf() to read 
an int from the input buffer. Note that we used a 
temporary int to read in the number instead of 
reading it directly into infoPtr->rating. We did 
this because the %d format specifier expects an int 
and rating is declared as a char. Once we read 
the number, we call Flush() to get rid of any other 
characters (including the ‘\n’).

 do

 {

  printf( “Enter CD Rating (1-10):  “ );

  scanf( “%d”, &num );

  Flush();

 }

 while ( ( num < 1 ) || ( num > 10 ) );

This do loop is not as careful as it could be. If 
scanf() encounters an error of some kind, num 
will end up with an undefined value. If that undefined 
value happens to be between 1 and 10, the loop will 
exit and an unwanted value will be entered in the 
rating field. Though that might not be that big a 
deal in our case, we probably would want to drop out 
of the loop or, at the very least, print some kind of 
error message if this happens.

Here’s another version of the same code:

do

{

  printf( “Enter CD Rating (1-10): “ );

  if ( scanf( “%d”, &num ) != 1 )

  {

    printf( “Error returned by 
scanf()!\n” );

    exit( -1 );

  };

  Flush();

}

while ( ( num < 1 ) || ( num > 10 ) );



210

Chapter 9:  
Design Your Own 
Data Structures

scanf() returns the number of items it read. Since 
we’ve asked it to read a single int, this version prints 
an error message and exits if we don’t read exactly 
one item. This is a pretty simplistic error strategy, but 
it does make a point. Pay attention to error conditions 
and to function return values.

Once a number is read in that’s between  and 0, the 
number is assigned to the rating field of the newly 
allocated struct.

 infoPtr->rating = num;

Finally, a separating line is printed and the pointer to 
the new struct is returned.

 printf( “\n----------\n” );
 
 return( infoPtr );
}

AddToList() takes a pointer to a CDInfo 
struct as a parameter. It uses the pointer to add 
the struct to the linked list.

/*****************************************> 
AddToList <*/

void AddToList( struct CDInfo *curPtr )
{

If gFirstPtr is NULL, the list must be empty. If so, 
make gFirstPtr point to the new struct.

 if ( gFirstPtr == NULL )
  gFirstPtr = curPtr;

If gFirstPtr is not NULL, there’s at least one 
element in the linked list. In that case, make the 
next field of the very last element on the list point 
to the new struct.

 else
  gLastPtr->next = curPtr;

In either case, set gLastPtr to point to the new 
“last element in the list.” Finally, make sure the next 
field of the last element in the list is NULL. You’ll see 
why we did this in the next function, ListCDs().

 gLastPtr = curPtr;
 curPtr->next = NULL;
}

ListCDs() lists all the CDs in the linked list. The 
variable curPtr is used to point to the link element 
currently being looked at.
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/*****************************************> 
ListCDs <*/

void ListCDs( void )
{
 struct CDInfo *curPtr;

If no CDs have been entered yet, we’ll print an 
appropriate message.

 if ( gFirstPtr == NULL )
 {
  printf( “No CDs have been entered yet...\
n” );

  printf( “\n----------\n” );
 }

Otherwise we’ll use a for loop to step through the 
linked list. The for loop starts by setting curPtr 
to point to the first element in the linked list and 
continues as long as curPtr is not NULL. Each time 
through the loop, curPtr is set to point to the next 
element in the list. Since we make sure that the last 
element’s next pointer is always set to NULL, When 
curPtr is equal to NULL, we know we have been 
through every element in the list and we are done.

 else
 {
  for ( curPtr=gFirstPtr; curPtr!=NULL; 
curPtr = curPtr->next )

  {

The first two printf()s use the “%s” format 
specifier to print the strings in the fields artist 
and title.

  printf( “Artist: %s\n”, curPtr->artist );
  printf( “Title:  %s\n”, curPtr->title );

Next, the rating field and a separating line are 
printed and it’s back to the top of the loop.

  printf( “Rating: %d\n”, curPtr->rating );
 
  printf( “\n----------\n” );
  }
 }
}

Flush() uses getchar() to read characters from 
the input buffer until it reads in a carriage return. 
Flush() is a good utility routine to have around.

/*****************************************> 
Flush <*/

void Flush( void )
{
 while ( getchar() != ‘\n’ )
  ;
}
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Flush() was based on the Standard Library 
function fflush(). fflush() flushes the input 
buffer associated with a specific file. Since we haven’t 
gotten into files yet, we wrote our own version, 
though as you can see, it wasn’t that hard.

What’s Next?
This chapter covered a wide range of topics, 
from #includes to linked lists. The intent of 
the chapter, however, was to attack a real-world 
programming problem; in this case, a program to 
catalog CDs. The chapter showed several design 
approaches, discussing the pros and cons of each. 
Finally, the chapter presented a prototype for a CD-
tracking program. The program allows you to enter 
information about a series of CDs and, on request, 
will present a list of all the CDs tracked.

One problem with this program is that once you exit, 
all of the data you entered is lost. The next time you 
run the program, you have to start all over again.

Chapter 0 offers a solution to this problem. The 
chapter introduces the concept of files and file 
management, showing you how to save your data 
from memory out to your hard-disk drive and how 
to read your data back in again. The chapter updates 
cdTracker, storing the CD information collected 
in a file on your disk drive.
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Exercises
) What’s wrong with each of the following code 

fragments:

      a)
 struct Employee
 {
  char  name[ 20 ];
  int employeeNumber
 };

      b)
 while ( getchar() == ‘\n’ ) ;

      c)
 #include “stdio.h”

      d)
 struct Link
 {
  name[ 50 ];
  Link *next;
 };

      e)
 struct Link
 {
  struct Link next;
  struct Link prev;
 }

      f )
 StepAndPrint( char *line )
 { 
 while ( *line != 0 )
  line++;

 printf( “%s”, line );
 }

2) Update cdTracker so it maintains its linked 
list in order from the lowest rating to the highest 
rating. If two CDs have the same rating, the order 
is unimportant.

3) Update cdTracker, adding a prev field to 
the CDInfo struct so it maintains a doubly-
linked list. As before, the next field will point to 
the next link in the list. Now, however, the prev 
field should point to the previous link in the list. 
Add an option to the menu that prints the list 
backward, from the last struct in the list to the 
first.
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hapter 9 introduced cdTracker, a program designed 
to keep track of your compact disc collection. 
cdTracker allowed you to enter a new CD, 
as well as list all existing CDs. cdTracker’s 
biggest shortcoming was that it didn’t save the CD 
information when it exited. If you ran cdTracker, 
entered information on ten CDs, and then quit, your 
information would be gone. The next time you ran 
cdTracker, you’d have to start from scratch.

The solution to this problem is to somehow save 
all of the CD information before you quit the 
program. This chapter will show you how. Chapter 0 
introduces the concept of files, the long-term storage 
for your program’s data.

As you move on to other programming languages 
(such as Objective-C, Java, or C++), sophisticated 
development toolkits (such as Cocoa), and even other 
Operating Systems, you’ll find there are many ways 
to work with files. Most of them are based on the 
concepts you’ll learn in this chapter.

Stay with the program! Learn the basics and you’ll 
find moving on to other development platforms 
much, much easier in the long run.
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What is a File?
A file is a series of bytes residing in some storage 
media. Files can be stored on your hard drive, on a 
recordable CD or DVD, or even on your iPod. The 
iTunes application is made up of a collection of files, 
including the actual executable, the preference files, 
and all the song files. Your favorite word processor 
lives in a file, and so does each and every document 
you create with your word processor.

The project archive that came with this book 
contains many different files. Apple’s developer tools 
are made up of hundreds of files. Each of the Learn 
C projects consists of at least two files: a project file 
and at least one source code file. When you compile 
and link a project, you produce a new kind of file, an 
application file.

All of these are examples of the same thing: a 
collection of bytes known as a file.

All of the files on your computer share a common 
set of traits. For example, each file has a size. The file 
main.c from the cdTracker project has a size of 
2,425 bytes. The main.c from multiArray was only 
93 bytes. Each of these files resides on my Mac’s 
internal hard drive.

Working With Files, Part One
In the C world, each file consists of a stream of 
consecutive bytes. When you want to access the 
data in a file, you first open the file using a Standard 
Library function named fopen(), pronounced eff-
open. Once your file is open, you can read data from 
the file or write new data back into the file using 
Standard Library functions like fscanf() and 
fprintf(). Once you are done working with your 
file, you’ll close it using the Standard Library function 
fclose().

Opening and Closing a File
Here’s the function prototype for fopen(), found in 
the file <stdio.h>:

FILE *fopen( const char *name, const char 
*mode );
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The const keyword marks a variable or parameter 
as read-only. In other words, fopen() is not 
allowed to modify the array of characters pointed at 
by name or mode. Here’s another example:

const int

myInt = 27;

This declaration creates an int named myInt and 
assigns it a value of 27 (we’ll talk about definitions 
that also initialize in Chapter 11). More importantly, 
the value of myInt is now permanently set. myInt 
is now read-only. As long as myInt remains in scope, 
you can’t change its value.

The first parameter, name, tells fopen() which file 
you want to open. For example, the file name “My 
Data File” tells fopen() to look in the current 
folder (the folder containing the currently running 
application) for a file named My Data File.

The “/” (slash), “.” (dot), and “~” (tilde) characters 
have a special meaning when naming Unix and Mac 
OS X files. The “.” refers to the current folder, the “/” is 
a directory separator, and the “~” specifies your home 
directory.

For example, if I wanted to refer to the file “My Data 
File” in the current directory, I’d use the string 
“./My Data File”. The string “/My Data 
File” refers to the file named “My Data File” 
at the very top level of your hard drive. This top level 
is also known as the root level of your hard drive.

Two dots in a row refer to the parent directory of 
the current directory. So the string “../My Data 
File” refers to the file named “My Data File” 
one level up from the current directory.

The string “~/My Data File” refers to the file 
named “My Data File” in your home directory. 
On my Mac, my home directory is the directory /
Users/davemark.

As you make your way through the programs in this 
chapter, play with the file names till you understand 
these concepts.

 The second parameter, mode, tells fopen() how 
you’ll be accessing the file. The three basic file modes 
are “r”, “w”, and “a”, which stand for read, write, 
and append, respectively.

“r” tells fopen() that you want to read data from 
the file and that you won’t be writing to the file at all. 
The file must already exist in order to use this mode. 
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In other words, you can’t use the mode “r” to create 
a file.

The mode “w” tells fopen() that you want to write 
to the specified file. If the file doesn’t exist yet, a new 
file with the specified name is created. If the file does 
exist, fopen() deletes it and creates a new empty 
file for you to write into.

This last point bears repeating. Calling fopen() 
with a mode of “w” will delete a file’s contents if the 
file already exists, essentially starting you over from 
the beginning of the file. Be careful!

The mode “a” is similar to “w”. It tells fopen() 
that you want to write to the specified file and to 
create the file if it doesn’t exist. If the file does exist, 
however, the data you write to the file is appended to 
the end of the file.

If fopen() successfully opens the specified file, 
it allocates a struct of type FILE and returns a 
pointer to the FILE struct. The FILE struct 
contains information about the open file, including 
the current mode (“r”, “w”, “a” or whatever) as 
well as the current file position. The file position is 
a pointer into the file that acts like a bookmark in a 
book. When you open a file for reading, for example, 
the file position points to the first byte in the file. 
When you read the first byte, the file position moves 
to the next byte.

It’s not really important to know the details of the 

FILE struct. All you need to do is keep track of 
the FILE pointer returned by fopen(). By passing 
the pointer to a Standard Library function that reads 
or writes, you’ll be sure the read or write takes place 
in the right file and at the right file position. You’ll 
see how all this works as we go through the chapter 
sample code.

Here’s a sample fopen() call:

FILE *fp;

if ( (fp = fopen( “My Data File”, “r”)) == 
NULL )

{
 printf( “File doesn’t exist!!!\n” );
 exit(1);
}

This code first calls fopen(), attempting to open 
the file named “My Data File” for reading. If 
fopen() cannot open the file for some reason 
(perhaps you’ve asked it to open a file that doesn’t 
exist or you’ve already opened the maximum number 
of files - see the next tech block), it returns NULL. In 
that case, we’ll print an error message and exit.

There is a limit to the number of simultaneous 
open files. This limit is implemented as a constant, 
FOPEN_MAX, defined in the file <stdio.h>.

If fopen() does manage to open the file, it will 
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allocate the memory for a FILE struct, and 
fp will point to that struct. We can then pass 
fp to routines that read from the file. Once we’re 
done with the file, we’ll pass fp to the function 
fclose():

int fclose( FILE *stream );

fclose() takes a pointer to a FILE as a parameter 
and attempts to close the specified file. If the file 
is closed successfully, fclose() frees up the 
memory allocated to the FILE struct and returns 
a value of 0. It is very important that you match 
every fopen() with a corresponding fclose(), 
otherwise you’ll end up with unneeded FILE 
structs floating around in memory.

In addition, once you’ve passed a FILE pointer to 
fclose(), that FILE pointer no longer points to a 
FILE struct. If you want to access the file again, 
you’ll have to make another fopen() call.

If fclose() fails, it returns a value of -1. Many 
programmers ignore the value returned by 
fclose(), since there’s not a whole lot you can 
do about it. On the other hand, you can never have 
too much error checking in your code, so you might 
consider checking the value returned by fclose() 
and, at the very least, printing an appropriate error 
message if fclose() fails.

Reading a File
Once you open a file for reading, the next step 
is to read data from the file. There are several 
Standard Library functions to help you do just 
that. For starters, the function fgetc() reads a 
single character from a file’s input buffer. Here’s the 
function prototype:

int fgetc( FILE *fp );

The single parameter is the FILE pointer returned 
by fopen(). fgetc() reads a single character 
from the file and advances the file position pointer. 
If the file position pointer is already at the end of the 
file, fgetc() returns the constant EOF.
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Though fgetc() returns an int, a line like this:

char   c;

c = fgetc( fp );

works just fine. When the C compiler encounters 
two different types on each side of an assignment 
operator, it does its best to convert the value on the 
right side to the type of the left side before doing the 
assignment. As long as the type of the right side is 
no larger than the type of the left side (as is the case 
here: an int is at least as large as a char) this won’t 
be a problem.

We’ll get into the specifics of typecasting in Chapter 
11.

The function fgets(), which we made use of in 
Chapter 9, reads a series of characters into an array 
of chars. Here’s the function prototype:

char *fgets( char *s, int n, FILE *fp );

The first parameter is a pointer to an array of chars 
that you’ve already allocated. Don’t just declare 
a (char *) and pass it in to fgets(). Instead, 
allocate an array of chars large enough to hold the 
largest block of chars you might end up reading 
in, then pass a pointer to that array as the first 
parameter (you’ll see an example in a second).

The second parameter is the maximum number of 

characters you’d like to read. fgets() stops reading 
once it reads in n-1 chars, or if it encounters an 
end-of-file or a ‘\n’ before it reads n-1 chars. If 
fgets() successfully reads n-1 chars, it appends 
a 0 terminator to the char array (that’s why the 
array has to be at least n chars in size).

If fgets() encounters a ‘\n’ before it reads n-1 
chars, it stops reading after the ‘\n’ is read, then 
adds the 0 terminator to the array, right after the ‘\
n’.

If fgets() encounters an end-of-file before it reads 
n-1 chars, it adds the 0 terminator to the array, 
right after the last character read.

If fgets() encounters an end-of-file before it reads 
in any chars, it returns NULL. Otherwise, fgets() 
returns a pointer to the char array.

Finally, the third parameter is the FILE pointer 
returned by fopen().

Here’s an example:

#define kMaxBufferSize  200

FILE  *fp;
char  buffer[ kMaxBufferSize ];

if ( (fp = fopen( “My Data File”, “r”)) == 
NULL )

{
 printf( “File doesn’t exist!!!\n” );
 exit(1);
}
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if ( fgets( buffer, kMaxBufferSize, fp ) == 
NULL )

{
 if ( feof( fp ) )
  printf( “End-of-file!!!\n” );
 else
  printf( “Unknown error!!!\n” );
}
else
 printf( “File contents: %s\n”, buffer );

Notice that the example calls a function named 
feof() if fgets() returns NULL. fgets() 
returns NULL no matter what error it encounters. 
feof() returns true if the last read on the 
specified file resulted in an end-of-file, false 
otherwise.

The function fscanf() is similar to scanf(), 
reading from a file instead of the keyboard. Here’s the 
prototype:

int fscanf( FILE *fp, const char* format, ... 
);

The first parameter is the FILE pointer returned 
by fopen(). The second parameter is a format 
specification embedded inside a character string. The 
format specification tells fscanf() what kind of 
data you want read from the file. The ... operator 
in a parameter list tells the compiler that 0 or more 
parameters may follow the second parameter. Like 

scanf() and printf(), fscanf() uses the 
format specification to determine the number of 
parameters it expects to see. Be sure to pass the 
correct number of parameters or your program will 
get confused.

These are a few of the file access functions provided 
by the Standard Library. Wanna look up something? 
Here’s that link to that online Standard Library 
reference I keep mentioning:

http://www.infosys.utas.edu.au/info/
documentation/C/CStdLib.html

Click on the link to <stdio.h> at the top of the 
page. You might also want to take a look at C, A 
Reference Manual by Harbison and Steele and check 
out Chapter 5, entitled “Input/Output Facilities”.

In the meantime, here’s an example that uses the 
functions fopen() and fgetc() to open a file and 
display its contents.

printFile.xcode
printFile opens a file named My Data File, reads 
in all the data from the file, one character at a time, 
and prints each character in the console window.

Open the Learn C Projects folder, go inside the 
folder 0.0 - printFile, and open and run the project 
printFile.xcode. Compare your output with the 

http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html
http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html
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console window shown in Figure 0.. They should be 
the same.

Figure 0. The printFile output, showing the 
contents of the file My Data File.

Let’s take a look at the data file read in by 
printFile. Select Open... from Xcode’s File menu. 
Xcode will prompt you for a text file to open. Be sure 
you are in the 0.0 - printFile directory and select 
the file named My Data File. An editing window will 
open allowing you to edit the contents of My Data 
File. Feel free to make some changes to the file and 
run the program again. Make sure you don’t change 
the name or the location of the file.

Let’s take a look at the source code.

Stepping Through the Source Code
Open the source code file main.c by double-clicking 
on its name in the project window. Take a minute to 
look over the source code. Once you feel comfortable 
with it, read on.

main.c starts off with the usual #include.

#include <stdio.h>

main() defines two variables. fp is our FILE 
pointer, and c is an int that will hold the chars we 
read from the file.

int main (int argc, const char * argv[]) 
{
 FILE  *fp;
 int  c;

This call of the function fopen() opens the file 
named My Data File for reading, returning the file 
pointer to the variable fp.

 fp = fopen( “../My Data File”, “r” );
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Notice the “../” in the beginning of the file name we 
passed to fopen(). As described earlier, the “../” 
means that the file is in the parent directory, one level 
up from the application. But wait. The file My Data File 
is in the same directory as the project file. What gives?

This behavior is specific to the way applications 
are built under Mac OS X. Though an application 
might look like a single file, it really is a directory 
with a series of files embedded in it, including the 
executable, all packaged together to look like a single 
file. Since the executable is actually buried one level 
deep within the package, we need to pop up one 
level to find My Data File.

If we built this program as a Unix binary using the 
Terminal app, we’d need to remove the “../” from 
the beginning of the file name, since Unix apps do 
not do the fakeout package trick.

Just thought you’d like to know.

If fp is not NULL, the file was opened successfully.

 if ( fp != NULL )
 {

The while loop continuously calls fgetc(), 
passing it the file pointer fp. fgetc() returns the 
next character in fp’s input buffer. The returned 
character is assigned to c. If c is not equal to EOF, 
putchar() is called, taking c as a parameter.

 while ( (c = fgetc( fp )) != EOF )
  putchar( c );

putchar() prints the specified character to the 
console window. We could have accomplished the 
same thing by using printf():

printf( “%c”, c );

As you program, you’ll often find two different 
solutions to the same problem. Should you use 
putchar() or printf()? If performance is 
critical, pick the option that is more specific to your 
particular need. In this case, printf() is designed 
to handle many different data types. putchar() is 
designed to handle one data type, an int. Chances 
are the source code for putchar() is simpler and 
more efficient than the source code for printf() 
when it comes to printing an int. If performance is 
critical, you might want to use putchar() instead 
of printf(). If performance isn’t critical, go with 
your own preference.

Once we are done, we’ll close the file by calling 
fclose(). Remember to always balance each call of 
fopen() with a corresponding call to fclose().
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  fclose( fp );
 }

 return 0;
}

stdin, stdout, and stderr
C provides you with three FILE pointers that are 
always available and always open. stdin represents 
the keyboard, stdout represents the console 
window, and stderr represents the file where the 
user wants all error messages sent. stdin, stdout, 
and stderr are normally associated with command 
line oriented operating systems like Unix and 
DOS and are rarely used on the Macintosh, but it’s 
definitely worth knowing about them.

In printFile, we used the function fgetc() to 
read a character from a previously opened file. This 
line:

c = fgetc( stdin );

will read the next character from the keyboard’s 
input buffer.

fgetc( stdin )

is equivalent to calling

getchar()

As you’ll see in the next few sections, whenever C 
provides a mechanism for reading or writing to a file, 
C will also provide a similar mechanism for reading 
from stdin or writing to stdout.
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Working With Files, Part Two
So far, you’ve learned how to open a file using 
fopen() and how to read from a file using 
fgetc(). You’ve seen, once again, that you can 
often use two different functions to solve the same 
problem. Now let’s look at some functions that allow 
you to write data out to a file.

Writing to a File
The Standard Library offers several functions that 
write data out to a previously opened file. This 
section will introduce three of them: fputc(), 
fputs(), and fprintf().

fputc() takes an int holding a character value, 
and writes the character out to the specified file. 
fputc() is declared as follows:

int fputc( int c, FILE *fp );

If fputc() successfully writes the character out 
to the file, it returns the value passed to it in the 
parameter c. If the write fails for some reason, 
fputc() returns the value EOF.

Note that:

fputc( c, stdout );

is the same as calling:

putchar( c );

fputs() is similar to fputc(), but writes out a 
0-terminated string instead of a single character. 
fputs() is declared as follows:

int fputs( const char *s, FILE *fp );

fputs() writes out all the characters in the string, 
but does not write out the terminating 0. If the write 
succeeds, fputs() returns a 0. If the write fails, 
fputs() returns EOF.

fprintf() works just like printf(). Instead 
of sending its output to the console window, 
fprintf() writes its output to the specified file. 
fprintf() is declared as follows:

int fprintf( FILE *fp, const char *format, 
... );

The first parameter specifies the file to be written to. 
The second is the format specification text string. 
Any further parameters depend on the contents of 
the format specification string. 
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cdFiler.xcode
In Chapter 9, we ran cdTracker, a program 
designed to help you track your CD collection. The 
big shortcoming of cdTracker is its inability to 
save your carefully entered CD data. As you quit 
the program, the CD information you entered gets 
discarded, forcing you to start over the next time you 
run cdTracker.

Our next program, cdFiler, solves this problem 
by adding two special functions to cdTracker. 
ReadFile() opens a file named cdData, reads in 
the CD data from the file, and uses the data to build 
a linked list of cdInfo structs. WriteFile() 
writes the linked list back out to the file.

Open the Learn C Projects folder, go inside the folder 
0.02 - cdFiler, and open the project cdFiler.xcode. 
Check out the cdFiler.xcode project window shown 
in Figure 0.2. Notice that there are three separate 
source code files (two .c files and one .h file). Your 
project can contain as many source code files as you 
like. Just make sure that only one of the files has a 
function named main(), since that’s where your 
program will start.

Figure 0.2 The cdFiler project window.

The file main.c is almost identical to the file main.c 
from Chapter 9’s cdTracker program. The file files.
c contains the functions that allow cdFiler to read 
and write the file cdData.

Exploring cdData
Before you run the program, use Xcode to take a 
quick look at the file cdData. At first glance, the 
contents of the file may not make much sense, but 
the text does follow a well-defined pattern:

Frank Zappa
Anyway the Wind Blows
8
Edith Piaf
The Voice of the Sparrow
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10
Joni Mitchell
For the Roses
9

The file is organized in clusters of three lines each. 
Each cluster contains a one-line CD artist, a one-line 
CD title, and a one-line numerical CD rating.

The layout of your data files is as important a part 
of the software design process as the layout of your 
program’s functions. The file described above follows 
a well-defined pattern. As you lay out a file for your 
next program, think about the future. Can you live 
with one-line CD titles? Do you want the ability to add 
a new CD field, perhaps the date of the CD’s release?

The time to think about these types of questions is 
at the beginning of your program’s life, during the 
design phase.

Running cdFiler
Before you run cdFiler, close the cdData text-
editing window.

To create this window, Xcode had to open the file 
cdData. If you don’t close the window before you run 
the program, the file will remain open. When you run 
cdFiler, it will also open the file. You’ll have the 
same file open in two places. This is not a good idea.

Why? Suppose you make some changes to the file 
in Xcode but don’t save your changes. Now you run 
cdFiler and make some changes, with cdFiler 
saving the changes. What happens if you go back to 
Xcode and save your changes? Most likely, Xcode will 
overwrite the changes you made using cdFiler 
and the cdFiler changes will be lost. Not good!

Once the window is closed, run cdFiler. The 
console window will appear, prompting you for a 
‘q’, ‘n’, or ‘l’:

Enter command (q=quit, n=new, l=list): l

Type an l, followed by a carriage return. This will 
list the CDs currently in the program’s linked list. If 
you need a refresher on linked lists, now would be a 
perfect time to turn back to Chapter 9.

Enter command (q=quit, n=new, l=list):  l

----------
Artist:  Frank Zappa
Title:   Anyway the Wind Blows
Rating:  8

----------
Artist:  Edith Piaf
Title:   The Voice of the Sparrow
Rating:  10

----------
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Artist:  Joni Mitchell
Title:   For the Roses
Rating:  9

----------
Enter command (q=quit, n=new, l=list):  

While Chapter 9’s cdTracker started with an 
empty linked list, cdFiler starts with a linked list 
built from the contents of the cdData file. The CDs 
you just listed should match the CDs you saw when 
you edited the cdData file.

Let’s add a fourth CD to the list. Type an ‘n’ 
followed by a carriage return:

Enter command (q=quit, n=new, l=list): n

----------
Enter Artist’s Name: Adrian Belew
Enter CD Title: Mr. Music Head
Enter CD Rating (1-10): 8

----------
Enter command (q=quit, n=new, l=list):

Next, type an ‘l’ to make sure your new CD made 
it into the list:

Enter command (q=quit, n=new, l=list): l

----------
Artist:  Frank Zappa

Title:   Anyway the Wind Blows
Rating:  8

----------
Artist:  Edith Piaf
Title:   The Voice of the Sparrow
Rating:  10

----------
Artist:  Joni Mitchell
Title:   For the Roses
Rating:  9

----------
Artist: Adrian Belew
Title:  Mr. Music Head
Rating: 8

----------
Enter command (q=quit, n=new, l=list): 

Finally, type a ‘q’ followed by a carriage return. This 
causes the program to write the current linked list 
back out to the file cdData. To prove this worked, 
run cdFiler one more time. When prompted for a 
command, type an ‘l’ to list your current CDs. You 
should find your new CD nestled at the bottom of 
the list. Let’s see how this works.

Stepping Through the Source Code
The file cdFiler.h contains source code that will be 
included by both main.c and files.c. The first two 
#defines should be familiar to you. The third 
creates a constant containing the name of the file 
containing our CD data.
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/***********/
/* Defines */
/***********/
#define kMaxArtistLength  256
#define kMaxTitleLength  256

#define kCDFileName  “../cdData”

This CDInfo struct is identical to the one found 
in cdTracker.

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
 char  rating;
 char  artist[ kMaxArtistLength ];
 char  title[ kMaxTitleLength ];
 struct CDInfo *next;
};

Just as we did in cdTracker, we’ve declared two 
globals to keep track of the beginning and end of our 
linked list. The extern keyword at the beginning 
of the declaration tells the C compiler to link this 
declaration to the definition of these two globals, 
which can be found in main.c. If you removed the 
extern keyword from this line, the compiler would 
first compile files.c, defining space for both pointers. 
When the compiler went to compile main.c, it would 
complain that these globals were already declared.

The extern mechanism allows you to declare 
a global without actually allocating memory for 
it. Since the extern declaration doesn’t allocate 
memory for your globals, you’ll need another 
declaration (usually found in the same file as 
main()) that does allocate memory for the globals. 
You’ll see that declaration in main.c.

/***********************/
/* Global Declarations */
/***********************/
 extern struct CDInfo *gFirstPtr, *gLastPtr;

Next comes the list of function prototypes. By 
listing all the functions in this #include file, we 
make all functions available to be called from all 
other functions. As your programs get larger and 
more sophisticated, you might want to create a 
separate include file for each of your source code 
files. Some programmers create one include file for 
globals, another for defines, and another for function 
prototypes. 

/********************************/
/* Function Prototypes - main.c */
/********************************/
char  GetCommand( void );
struct CDInfo *ReadStruct( void );
void  AddToList( struct CDInfo *curPtr );
void  ListCDs( void );
void  ListCDsInReverse( void );
void  Flush( void );
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/*********************************/
/* Function Prototypes - files.c */
/*********************************/
void WriteFile( void );
void ReadFile( void );
char ReadStructFromFile( FILE *fp, struct 
CDInfo *infoPtr );

The file main.c is almost exactly the same as the file 
main.c from Chapter 9’s cdTracker program. 
There are four differences. First, we include the file 
cdFiler.h instead of cdTracker.h.

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include “cdFiler.h”

Next, we include the definitions of our two globals 
directly in this source code file, to go along with the 
extern declarations in cdFiler.h. This definition is 
where the memory actually gets allocated for these 
two global pointers.

/***********************/
/* Global Definitions */
/***********************/
struct CDInfo *gFirstPtr, *gLastPtr;

main() contains the last two differences. Before 

we enter the command processing loop, we call 
ReadFile() to read in the cdData file and turn the 
contents into a linked list.

/**************************> main <*/
int main (int argc, const char * argv[])
{
 char  command;
 
 gFirstPtr = NULL;
 gLastPtr = NULL;
 
 ReadFile();
 
 while ( (command = GetCommand() ) != ‘q’ )
 {
  switch( command )
  {
   case ‘n’:
    AddToList( ReadStruct() );
    break;
   case ‘l’:
    ListCDs();
    break;
  }
 }

Once we drop out of the loop, we call 
WriteFile() to write the linked list out to the file 
cdData.

 WriteFile();
 
 printf( “Goodbye...” );



230

Chapter 10:  
Working
with Files

 
 return 0;
}

For completeness, here’s the remainder of main.
c. Each of these functions are identical to their 
cdTracker counterpart.

/*************************> GetCommand <*/
char GetCommand( void )
{
 char command;
 
 do 
 {
  printf( “Enter command (q=quit, n=new,   
  l=list):  “ );

  scanf( “%c”, &command );
  Flush();
 }
 while ( (command != ‘q’) && (command != ‘n’)
    && (command != ‘l’) );
 
 printf( “\n----------\n” );
 return( command );
}

/*************************> ReadStruct <*/
struct CDInfo *ReadStruct( void )
{
 struct CDInfo *infoPtr;
 int   num;
 char  *result;
 
 infoPtr = malloc( sizeof( struct CDInfo ) );

 
 if ( infoPtr == NULL )
 {
  printf( “Out of memory!!!  Goodbye!\n” );
  exit( 0 );
 }
 
 printf( “Enter Artist’s Name:  “ );
 result = fgets( infoPtr->artist,    
  kMaxArtistLength, stdin );

 infoPtr->artist[ strlen( infoPtr->artist ) -  
  1 ] = ‘\0’;

 
 printf( “Enter CD Title:  “ );
 result = fgets( infoPtr->title,    
  kMaxTitleLength, stdin );

 infoPtr->title[ strlen( infoPtr->title ) -   
  1 ] = ‘\0’;

 
 do
 {
  printf( “Enter CD Rating (1-10):  “ );
  scanf( “%d”, &num );
  Flush();
 }
 while ( ( num < 1 ) || ( num > 10 ) );
 
 infoPtr->rating = num;
 
 printf( “\n----------\n” );
 
 return( infoPtr );
}

/***************************> AddToList <*/
void AddToList( struct CDInfo *curPtr )
{
 if ( gFirstPtr == NULL )
  gFirstPtr = curPtr;
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 else
  gLastPtr->next = curPtr;
 
 gLastPtr = curPtr;
 curPtr->next = NULL;
}

/*****************************> ListCDs <*/
void ListCDs( void )
{
 struct CDInfo *curPtr;
 
 if ( gFirstPtr == NULL )
 {
  printf( “No CDs have been entered yet... 
  \n” );

  printf( “\n----------\n” );
 }
 else
 {
  for ( curPtr=gFirstPtr; curPtr!=NULL; 
curPtr = curPtr->next )

  {
   printf( “Artist:  %s\n”,    
   curPtr->artist );

   printf( “Title:   %s\n”,    
   curPtr->title );

   printf( “Rating:  %d\n”,    
   curPtr->rating );

 
   printf( “\n----------\n” );
  }
 }
}

/******************************> Flush <*/
void Flush( void )

{
 while ( getchar() != ‘\n’ )
  ;
}

files.c starts out with these #includes:

#include <stdlib.h>
#include <stdio.h>
#include <c.h>
#include “cdFiler.h”

WriteFile() first checks to see if there are any 
CDs to write out. If gFirstPtr is NULL (the value 
it was set to in main()), no CDs have been entered 
yet and we can just return.

/***************************> WriteFile <*/
void WriteFile( void )
{
 FILE  *fp;
 struct CDInfo *infoPtr;
 int   num;
 
 if ( gFirstPtr == NULL )
  return;

Next, we’ll open the file cdData for writing. If 
fopen() returns NULL, we know it couldn’t open 
the file and we’ll print out an error message and 
return.
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 if ( ( fp = fopen( kCDFileName, “w” ) )   
  == NULL )

 {
  printf( “***ERROR: Could not write CD   
  file!” );

  return;
 }

This for loop steps through the linked list, setting 
infoPtr to point to the first struct in the list, 
then moving it to point to the next struct, and so 
on, until infoPtr is equal to NULL. Since the last 
struct in our list sets its next pointer to NULL, 
infoPtr will be equal to NULL when it points to 
the last struct in the list.

 for ( infoPtr=gFirstPtr; infoPtr!=NULL;   
  infoPtr=infoPtr->next )

 {

Each time through the list, we call fprintf() 
to print the artist string followed by a carriage 
return and then the title string followed by a 
carriage return. Remember, each of these strings was 
0-terminated, a requirement if you plan on using the 
%s format specifier.

  fprintf( fp, “%s\n”, infoPtr->artist );
  fprintf( fp, “%s\n”, infoPtr->title );

Finally, we convert the rating field to an int 
by assigning it to the int num, then print it (as 
well as a following carriage return) to the file using 
fprintf(). We converted the char to an int 
because the %d format specifier was designed to 
work with an int, and not a char.

  num = infoPtr->rating;
  fprintf( fp, “%d\n”, num );
 }

Once we finish writing the linked list into the file, 
we’ll close the file by calling fclose().

 fclose( fp );
}

ReadFile() starts by opening the file cdData for 
reading. If we can’t open the file, we’ll print an error 
message and return, leaving the list empty.

/****************************> ReadFile <*/
void ReadFile( void )
{
 FILE  *fp;
 struct CDInfo *infoPtr;
 int   i;
 
 if ( ( fp = fopen( kCDFileName, “r” ) )   
  == NULL )

 {
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  printf( “***ERROR: Could not read CD   
   file!” );

  return;
 }

With the file open, we’ll enter a loop that 
continues as long as ReadStructFromFile() 
returns true. By using the do-while loop, 
we’ll execute the body of the loop before we call 
ReadStructFromFile() for the first time. This 
is what we want. The body of the loop attempts to 
allocate a block of memory the size of a CDInfo 
struct. If the malloc() fails, we’ll bail out of the 
program.

 do
 {
   infoPtr = malloc( sizeof( struct CDInfo ));
  
   if ( infoPtr == NULL )
   {
  printf( “Out of memory!!!  Goodbye!\n” );
  exit( 0 );
   }
 }
 while ( ReadStructFromFile( fp, infoPtr ) );

ReadStructFromFile() will return false 
when it hits the end of the file, when it can’t read 
another set of CDInfo fields. In that case, we’ll close 
the file and free up the last block we just allocated, 
since we have nothing to store in it.

 fclose( fp );
 free( infoPtr );
}

ReadStructFromFile() uses a funky form of 
fscanf() to read in the first two CDInfo fields. 
Notice the use of the format descriptor “%[^\n]\
n”. This tells fscanf() to read characters from 
the specified file until it hits a ‘\n’, then to read 
the ‘\n’ character and stop. The characters [^\n] 
represent the set of all characters except ‘\n’. Note 
that the %[ format specifier places a terminating 0-
byte at the end of the characters it reads in.

/*******************> ReadStructFromFile <*/
char ReadStructFromFile( FILE *fp, struct   
  CDInfo *infoPtr )

{
 int  num;
 
 if ( fscanf( fp, “%[^\n]\n”,     
  infoPtr->artist ) != EOF )

 {
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The square brackets inside a format specifier give you 
much greater control over scanf(). For example, 
the format specifier “%[abcd]” would tell 
scanf() to keep reading as long as it was reading 
either an ‘a’, a ‘b’, a ‘c’, or a ‘d’. The first non-
[abcd] character would be left in the input buffer 
for the next part of the format specifier or for the next 
read operation to pick up.

If the first character in the set is the character “^”, 
The set represents the characters that do not belong 
to the set. In other words, the format specifier 
“%[^abcd]”, tells scanf() to continue reading 
as long as it doesn’t encounter any of the characters 
‘a’, ‘b’, ‘c’, or ‘d’.

If fscanf() hits the end of the file, we’ll return 
false, letting the calling function know there are 
no more fields to read. If fscanf() succeeds, 
we’ll move on to the title field using the same 
technique. If this second fscanf() fails, we’ve got a 
problem, since we read an artist, but couldn’t read 
a title.

  if ( fscanf( fp, “%[^\n]\n”,    
   infoPtr->title ) == EOF )

  {
   printf( “Missing CD title!\n” );
   return false;
  }

Assuming we got both the artist and title, we’ll 

use a more normal format specifier to pick up an 
int and the third carriage return. 

  else if ( fscanf( fp, “%d\n”, &num ) ==  
   EOF )

  {
   printf( “Missing CD rating!\n” );
   return false;
  }

Assuming we picked up the int, we’ll use the 
assignment operator to convert the int to a char 
and add the now complete struct to the list by 
passing it to AddToList().

  else
  {
   infoPtr->rating = num;
   AddToList( infoPtr );
   return true;
  }
 }
 else
  return false;
}
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Working With Files, Part Three
Now that you’ve mastered the basics of file reading 
and writing, there are a few more topics worth 
exploring before we leave this chapter. We’ll start off 
with a look at some additional file opening modes.

The “Update” Modes
So far, you’ve encountered the three basic file 
opening modes: “r”, “w”, and “a”. Each of these 
modes has a corresponding update mode, specified 
by adding a “+” to the mode. The three update 
modes, “r+”, “w+”, and “a+”, each allow you to 
open a file for both reading and writing.

Though the three update modes do allow you 
to switch between read and write operations 
without reopening the file, you must first call 
either fsetpos(), fseek(), rewind(), or 
fflush() before you make the switch.

In other words, if your file is opened using one of the 
update modes, you can’t call fscanf() and then 
call fprintf() (or call fprintf() follewed 
by fscanf()) unless you call fsetpos(), 
fseek(), rewind(), or fflush() in between.

There is a great chart in Harbison and Steele’s C: A 
Reference Manual which summarizes these modes 
quite nicely. My version of the chart is found in 
Figure 0.3. Before you read on, take a minute to look 
the chart over to be sure you understand the different 
file modes.

"r" "w" "a" "r" "w" "a"Mode Rules
Named file must already exist
Existing file's contents are lost
Read OK
Write OK
Write begins at end of file

yes
no

no
no

no

no

no

no
no no

no no

no no
no

no

yes
yes

yes yes
yes

yes yes yes
yes yes

yes
yes

yes

yes

Figure 0.3 My version of the Harbison and Steele file 
mode chart showing the rules associated with each of the 
6 basic file opening modes.

C also allows a file mode to specify whether a file is 
limited to ASCII characters (text mode) or is allowed 
to hold any type of data at all (binary mode). To open 
a file in text mode, just append a “t” at the end of the 
mode string (like “rt” or “w+t”). To open a file in 
binary mode, append a “b” at the end of the mode 
string (like “rb” or “w+b”).

If you use a file mode that doesn’t include a “t” or a 
“b”, check your development environment doc to find 
out which of the two types is the default.

Random File Access
So far, each of the examples presented in this chapter 
have treated files as a sequential stream of bytes. 
When cdFiler read from a file, it started from the 
beginning of the file and read the contents, one byte 
at a time or in larger chunks, but from the beginning 
straight through until the end. This sequential 
approach works fine if you intend to read or write 
the entire file all at once. As you might have guessed, 
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there is another model.

Instead of starting at the beginning and streaming 
through a file, you can use a technique called random 
file access. The Standard Library provides a set of 
functions that let you reposition the file position 
indicator to any location within the file, so that the 
next read or write you do occurs exactly where you 
want it to.

Imagine a file filled with 00 longs, each of which 
was 4 bytes long. The file would be 400 bytes long. 
Now suppose you wanted to retrieve the 0th 
long in the file. Using the sequential model, you 
would have to do 0 reads to get the 0th long into 
memory. Unless you read the entire file into memory, 
you’ll constantly be reading a series of longs to get 
to the long you want.

Using the random access model, you would first 
calculate where in the file the 0th long starts, jump 
to that position in the file, then just read that long. 
To move the file position indicator just before the 
0th long, you’d skip over the first 9 longs (9*4 = 
36 bytes).

fseek(), ftell(), and rewind()
There are five functions that you’ll need to know 
about in order to randomly access your files. 
fseek() moves the file position indicator to an 
offset you specify, relative to either the beginning of 
the file, the current file position, or the end of the file:

int fseek( FILE *fp, long offset, int 
wherefrom );

You’ll pass your FILE pointer as the first parameter, 
a long offset as the second parameter, and one of 
SEEK_SET, SEEK_CUR, or SEEK_END as the third 
parameter. SEEK_SET represents the beginning of 
the file, SEEK_CUR represents the current position, 
and SEEK_END represents the end of the file (in 
which case you’ll probably use a negative offset).

ftell() takes a FILE pointer as a parameter 
and returns a long containing the value of the file 
position indicator:

long ftell( FILE *fp );

rewind() takes a FILE pointer as a parameter and 
resets the file position indicator to the beginning of 
the file:

void rewind( FILE *fp );
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The functions fsetpos() and fgetpos() were 
introduced as part of ISO C and allow you to work 
with file offsets that are larger than will fit in a long. 
You can look these two functions up in the usual 
places.

dinoEdit.µ
The last sample program in this chapter, dinoEdit, 
is a simple example of random file access. It allows 
you to edit a series of dinosaur names stored in a file 
named My Dinos. Each dinosaur name in My Dinos 
is 20 characters long. If the actual dinosaur name is 
shorter than 20 characters, the appropriate number 
of spaces is added to the name to bring the length up 
to 20. This is done to make the size of each item in 
the file a fixed length. You’ll see why this is important 
as we go through the source code. For now, let’s take 
dinoEdit for a spin.

Open the Learn C Projects folder, go inside the 
folder 0.03 - dinoEdit, and open and run dinoEdit.
xcode. dinoEdit will count the number of dinosaur 
names in the file My Dinos and will use that number 
to prompt you for a dinosaur number to edit:

Enter number from 1 to 5 (0 to exit): 

Since the file My Dinos has 5 dinosaurs, enter a 
number from  to 5:

Enter number from 1 to 5 (0 to exit): 3

If you enter the number 3, for example, dinoEdit 
will fetch the third dinosaur name from the file, then 
ask you to enter a new name for the third dinosaur. 
When you type a new name, dinoEdit will 
overwrite the existing name with the new name.

Dino #3: Galimimus           
Enter new name: Euoplocephalus

Either way, dinoEdit will prompt you to enter 
another dinosaur number. Reenter the same number, 
so you can verify that the change was made in the 
file.

Enter number from 1 to 5 (0 to exit): 3
Dino #3: Euoplocephalus      
Enter new name: Galimimus
Enter number from 1 to 5 (0 to exit): 0
Goodbye...

Let’s take a look at the source code...

Stepping Through the Source Code
The file dinoEdit.h starts off with a few #defines. 
kDinoRecordSize defines the length of each 
dinosaur record. Note that the dinosaur file doesn’t 
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contain any carriage returns, just 5 * 20 = 00 bytes 
of pure dinosaur pleasure!

kMaxLineLength defines the length of an array of 
chars we’ll use to read in any new dinosaur names. 
kDinoFileName is the name of the dinosaur file.

/***********/
/* Defines */
/***********/
#define kDinoRecordSize  20
#define kMaxLineLength  100
#define kDinoFileName  “../My Dinos”

Next come the function prototypes for the functions 
in main.c.

/********************************/
/* Function Prototypes - main.c */
/********************************/
int GetNumber( void );
int GetNumberOfDinos( void );
void ReadDinoName( int number, char    
  *dinoName );

char GetNewDinoName( char *dinoName );
void WriteDinoName( int number, char    
  *dinoName );

void Flush( void );
void DoError( char *message );

main.c starts with four #includes. <stdlib.h> 
gives us access to the function exit(). <stdio.
h> gives us access to a number of functions, 

including printf() and all the file manipulation 
functions, types and constants. <string.h> gives 
us access to the function strlen(). You’ve already 
seen what “dinoEdit.h” brings to the table.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include “dinoEdit.h”

If you ever want to find out which of the functions 
you call are dependent on which of your include 
files, just comment out the #include statement in 
question and recompile. The compiler will spew out 
an error message (or a whole bunch of messages) 
telling you it couldn’t find a prototype for a function 
you called.

main() basically consists of a loop that first 
prompts for a dinosaur number at the top of the 
loop, then processes the selection in the body of the 
loop.

/********************************> main <*/
int main( void )
{
 int number;
 FILE *fp;
 char dinoName[ kDinoRecordSize+1 ];



239

Chapter 10:  
Working
with Files

GetNumber() prompts for a dinosaur number 
between 0 and the number of dinosaur records in the 
file. If the user types 0, we’ll drop out of the loop and 
exit the program.

 while ( (number = GetNumber() ) != 0 )
 {

If we made it here, GetNumber() must 
have returned a legitimate record number. 
ReadDinoName() takes the dinosaur number and 
returns the corresponding dinosaur name from the 
file. The returned dinosaur name is then printed.

  ReadDinoName( number, dinoName );
  
  printf( “Dino #%d: %s\n”, number,   
   dinoName );

GetNewDinoName() prompts the user for a 
new dinosaur name to replace the existing name. 
GetNewDinoName() returns true if a name 
is entered and false if the user just hit a return. 
If the user entered a name, we’ll pass it on to 
WriteDinoName(), which will write the name in 
the file, overwriting the old name.

  if ( GetNewDinoName( dinoName ) )
   WriteDinoName( number, dinoName );
 }

 
 printf( “Goodbye...” );
 
 return 0;
}

GetNumber() starts off with a call to 
GetNumberOfDinos(). As its name implies, 
GetNumberOfDinos() goes into the dinosaur file 
and returns the number of records in the file.

/***************************> GetNumber <*/
int GetNumber( void )
{
 int  number, numDinos;
 
 numDinos = GetNumberOfDinos();

GetNumber() then continuously prompts for a 
dinosaur number until the user enters a number 
between 0 and numDinos.

 do 
 {
  printf( “Enter number from 1 to %d (0 to  
  exit): “, numDinos );

  scanf( “%d”, &number );
  Flush();
 }
 while ( (number < 0) || (number > numDinos));
 
 return( number );
}
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GetNumberOfDinos() starts our file 
management adventure. First, we’ll open My Dinos 
for reading only.

/*********************> GetNumberOfDinos <*/
int GetNumberOfDinos( void )
{
 FILE *fp;
 long fileLength;
 
 if ( (fp = fopen( kDinoFileName, “r” )) ==   
  NULL )

  DoError(“Couldn’t open file...Goodbye!”);

Notice that we’ve passed an error message to a 
function called DoError() instead of printing it 
with printf(). There are several reasons for doing 
this. First, since DoError() executes two lines 
of code (calls of printf() and exit()), each 
DoError() call saves a bit of code.

More importantly, this approach encapsulates all our 
error handling in a single function. If we want to send 
all error messages to a log file, all we have to do is edit 
DoError() instead of hunting down all the error 
messages and attaching a few extra lines of code.

Next, we’ll call fseek() to move the file position 
indicator to the end of the file. Can you see what’s 
coming?

 if ( fseek( fp, 0L, SEEK_END ) != 0 )
  DoError( “Couldn’t seek to end of file... 
   Goodbye!” );

Now we’ll call ftell() to retrieve the current file 
position indicator, which also happens to be the file 
length! Cool!

 if ( (fileLength = ftell( fp )) == -1L )
  DoError( “ftell() failed...Goodbye!” );

Now that we have the file length, we can close the 
file.

 fclose( fp );

Finally, we’ll calculate the number of dinosaur 
records by dividing the file length by the number of 
bytes in a single record. For simplicities’ sake, we’ll 
convert the number of records to an int before we 
return it. That means that we can’t deal with a file 
that contains more than 32,767 dinosaur records. 
How many dinosaurs can you name?

 return( (int)(fileLength / kDinoRecordSize) );
}
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ReadDinoName() first opens the file for reading 
only.

/************************> ReadDinoName <*/
void ReadDinoName( int number, char    
   *dinoName )

{
 FILE *fp;
 long bytesToSkip;
 
 if ( (fp = fopen( kDinoFileName, “r” )) ==   
   NULL )

  DoError(“Couldn’t open file...Goodbye!”);

Since we’ll be reading the numberth dinosaur, we 
have to move the file position indicator to the end of 
the (number-1)th dinosaur. That means we’ll need 
to skip over (number-1) dinosaur records.

 bytesToSkip = (long)((number-1) *    
  kDinoRecordSize);

We’ll use fseek() to skip that many bytes from the 
beginning of the file (that’s what the constant SEEK_
SET is for).

 if ( fseek( fp, bytesToSkip, SEEK_SET )   
   != 0 )

  DoError( “Couldn’t seek in file...   
   Goodbye!” );

Finally, we’ll call fread() to read the dinosaur 
record into the array of chars pointed to by 
dinoName. The first fread() parameter is the 
pointer to the block of memory where the data will 
be read. The second parameter is the number of 
bytes in a single record. fread() expects both the 
second and third parameters to be of type size_t, 
so we’ll use a typecast to make the compiler happy. 
Gee, by the time we talk about typecasting in 
Chapter , you’ll already be an expert! The third 
parameter is the number of records to read in. We 
want to read in  record of kDinoRecordSize 
bytes. The last parameter is the FILE pointer we got 
from fopen().

fread() returns the number of records read. Since 
we asked fread() to read  record, we expect 
fread() to return a value of . If that doesn’t 
happen, something is dreadfully wrong (perhaps the 
file got corrupted, or that Pepsi you spilled in your 
hard drive is finally starting to take effect).

 if ( fread( dinoName, 
   (size_t)kDinoRecordSize,   
  (size_t)1, fp ) != 1 )

  DoError( “Bad fread()...Goodbye!” );

Once again, we close the file when we’re done 
working with it.
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 fclose( fp );
}

GetNewDinoName() starts by prompting for a 
new dinosaur name, then calling fgets() to read 
in a line of text. We’ll use our strlen() trick to 
replace the ‘\n’ with a ‘\0’.

/**********************> GetNewDinoName <*/
char GetNewDinoName( char *dinoName )
{
 char line[ kMaxLineLength ];
 int  i, nameLen;
 char *result;
 
 printf( “Enter new name: “ );
 
 result = fgets( line, kMaxLineLength,   
   stdin );

 line[ strlen( line ) - 1 ] = ‘\0’;

Our next step is to fill the dinoName array with 
spaces. We’ll then call strlen() to find out how 
many characters the user typed in. We’ll copy those 
characters back into the dinoName array, leaving 
dinoName with a dinosaur name followed by a 
bunch of spaces.

 for ( i=0; i<kDinoRecordSize; i++ )
  dinoName[i] = ‘ ‘;

strlen() takes a pointer to a 0 terminated string 

and returns the length of the string, not including the 
0 terminator.

 nameLen = strlen( line );

If the user typed a dinosaur name larger than 
20 characters long, we’ll only copy the first 20 
characters.

 if ( nameLen > kDinoRecordSize )
  nameLen = kDinoRecordSize;

Here’s where we copy the characters from line into 
dinoName.

 for ( i=0; i<nameLen; i++ )
  dinoName[i] = line[i];

Finally, we’ll return true to let the calling function 
know that the name is ready.

 return true;
}

WriteDinoName() opens the file for reading 
and writing. Since we used a mode of “r+” instead 
of “w+”, we won’t lose the contents of My Dinos 
(in other words, My Dinos won’t be deleted and 
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recreated).

/************************> WriteDinoName <*/
void WriteDinoName( int number, char    
   *dinoName )

{
 FILE *fp;
 long bytesToSkip;
 
 if ( (fp = fopen( kDinoFileName, “r+” )) ==  
   NULL )

  DoError( “Couldn’t open file...Goodbye!” 
);

Next, we calculate the number of bytes we need 
to skip to place the file position indicator at the 
beginning of the record we want to overwrite, then 
call fseek() to move the file position indicator.

 bytesToSkip = (long)((number-1) *    
   kDinoRecordSize);

 if ( fseek( fp, bytesToSkip, SEEK_SET )   
   != 0 )

  DoError( “Couldn’t seek in file...   
   Goodbye!” );

We then call fwrite() to write the dinosaur record 
back out. fwrite() works exactly the same way 
as fread(), including returning the number of 
records written.

 if ( fwrite( dinoName,      
  (size_t)kDinoRecordSize,

   (size_t)1, fp ) != 1 )
  DoError( “Bad fwrite()...Goodbye!” );
 
 fclose( fp );
}

You’ve seen this function before...

/*******************************> Flush <*/
void Flush( void )
{
 while ( getchar() != ‘\n’ )
  ;
}

DoError() prints the error message, adding a 
carriage return, then exits.

/*****************************> DoError <*/
void DoError( char *message )
{
 printf( “%s\n”, message );
 exit( 0 );
}



244

Chapter 10:  
Working
with Files

What’s Next?
Chapter  tackles a wide assortment of 
programming topics. We’ll look at typecasting, the 
technique used to translate from one type to another. 
We’ll cover recursion, the ability of a function to call 
itself. We’ll also examine function pointers, variables 
that can be used to pass a function as a parameter.
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Exercises
) What’s wrong with each of the following code 

fragments:

      a)
 FILE *fp;

 fp = fopen( “w”, “My Data File” );
 if ( fp != NULL )
  printf( “The file is open.” );

      b)
 char  myData = 7;
 FILE *fp;

 fp = fopen( “r”, “My Data File” );
 fscanf( “Here’s a number: %d”, &myData );

      c)
 FILE *fp;
 char *line;

 fp = fopen( “My Data File”, “r” );
 fscanf( fp, “%s”, &line );

      d)
 FILE *fp;
 char line[100];

 fp = fopen( “My Data File”, “w” );
 fscanf( fp, “%s”, line );

2) Write a program that reads in and prints a file 
with the following format:

4The first line in the file contains a single int. 
Call it x.
4All subsequent lines contain a list of x ints 
separated by tabs. 

For example, if the first number in the file is 6, all 
subsequent lines will have 6 ints per line. There 
is no limit to the number of lines in the file. Keep 
reading and printing lines until you hit the end of 
the file.

You can print each int as you encounter it or, 
for extra credit, allocate an array of ints large 
enough to hold one line’s worth of ints, then 
pass that array to a function that prints an int 
array.

3) Modify cdFiler so memory for the artist 
and title lines is allocated as the lines are 
read in. First, you’ll need to change the CDInfo 
struct declaration as follows:

 struct CDInfo
 {
  char   rating;
  char   *artist
  char   *title;
  struct CDInfo *next;

 };
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Not only will you call malloc() to allocate a 
CDInfo struct, you’ll also call malloc() 
to allocate space for the artist and title 
strings. Don’t forget to leave enough space for the 
terminating 0 at the end of each string.
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ongratulations! By now you’ve mastered most of the 
fundamental C programming concepts. This chapter 
will fill you in on some useful C programming 
tips, tricks, and techniques that will enhance your 
programming skills. We’ll start with a look at 
typecasting, C’s mechanism for translating one data 
type to another.

What is Typecasting?
There often will be times when you find yourself 
trying to convert a variable of one type to a variable 
of another type. For example, this code fragment:

float f;
int  i;

f = 3.5;
i = f;

printf( “i is equal to %d”, i );

causes this line:

i is equal to 3

to appear in the console window. Notice that the 
original value assigned to f was truncated from 3.5 
to 3 when the value in f was assigned to i. This 
truncation was caused when the compiler saw an 
int on the left side and a float on the right side of 
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this assignment statement:

i = f;

The compiler automatically translated the float to 
an int. In general, the right side of an assignment 
statement is always translated to the type on the left 
side when the assignment occurs. In this case, the 
compiler handled the type conversion for you.

Typecasting is a mechanism you can use to translate 
the value of an expression from one type to another. 
A typecast, or just plain cast, always takes this form:

(type) expression

where type is any legal C type. In this code 
fragment:

float f;

f = 1.5;

the variable f gets assigned a value of .5. In this code 
fragment:

float f;

f = (int)1.5;

the value of .5 is cast as an int before being 
assigned to f. Just as you might imagine, casting 
a float as an int truncates the float, turning 
the value .5 into . In this example, two casts were 
performed. First, the float value .5 was cast to the 
int value . When this int value was assigned to 
the float f, the value was cast to the float value 
.0.

Cast With Care
Use caution when you cast from one type to another. 
Problems can arise when casting between types of a 
different size. Consider this example:

int  i;
char c;

i = 500;
c = i;

Here, the value 500 is assigned to the int i. So far, 
so good. Next, the value in i is cast to a char as it 
is assigned to the char c. See the problem? Since 
a char can only hold values between -28 and 27, 
assigning a value of 500 to c doesn’t make sense.
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So what happens to the extra byte or bytes when a 
larger type is cast to a smaller type? The matching 
bytes are typecast and the value of any extra bytes is 
lost. 

For example, when a 2 byte int is cast to a 1 byte 
char, the leftmost byte of the int (the byte with 
the more significant bits, the bits valued 28 through 
215) is dropped and the rightmost byte (the bits valued 
20 through 27) is copied into the char.

In this case:

int  i;

char c;

i = 500;

c = i;

the int i has a value of 0x01E4, which is hex for 
500. After the second assignment, the char ends 
up with the value 0xE4, which has a value of 244 
if the char was unsigned or -12 if the char is 
signed.

Casting With Pointers
Typecasting can also be used when working with 
pointers. This notation:

(int *) myPtr

casts the variable myPtr as a pointer to an int. 

Casting with pointers allows you to link together 
structs of different types. For example, suppose 
you declared two struct types, as follows:

struct Dog
{
 struct Dog *next;
} ;

struct Cat
{
 struct Cat *next;
} ;

By using typecasting, you could create a linked list 
that contains both Cats and Dogs. Figure . shows 
a Dog whose next field points to a Cat. Imagine the 
source code you’d need to implement such a linked 
list.

myDog myCat

Figure . myDog.next points to myCat. myCat.
next points to NULL.
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Consider this source code:

struct Dog myDog;
struct Cat myCat;

myDog.next = &myCat; /* <--Compiler complains 
*/

myCat.next = NULL;

In the first assignment statement, a pointer of one 
type is assigned to a pointer of another type. &myCat 
is a pointer to a struct of type Cat. myDog.next 
is declared to be a pointer to a struct of type Dog. 
To make this code compile, we’ll need a typecast:

struct Dog myDog;
struct Cat myCat;

myDog.next = (struct Dog *)(&myCat);
myCat.next = NULL;

If both sides of an assignment operator are 
arithmetic types (like float, int, char, etc.), the 
compiler will automatically cast the right side of the 
assignment to the type of the left side. If both sides 
are pointers, you’ll have to perform the typecast 
yourself.

There are a few exceptions to this rule. If the pointers 
on both sides of the assignment are the same type, no 
typecast is necessary. If the pointer on the right side 
is either NULL or of type (void *), no typecast is 

necessary. Finally, if the pointer on the left side is of 
type (void *), no typecast is necessary.

The type (void *) is sort of a wild card for 
pointers. It matches up with any pointer type. For 
example, here’s a new version of the Dog and Cat 
code:

struct Dog
{
 void *next;
} ;

struct Cat
{
 void *next;
} ;

struct Dog myDog;
struct Cat myCat;

myDog.next = &myCat;
myCat.next = NULL;

This code lets Dog.next point to a Cat struct 
without a typecast. If you are not sure what type your 
pointers will be pointing to, declare your pointers as 
(void *).
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Unions
C offers a special data type, known as a union, which 
allows a single variable to disguise itself as several 
different data types. unions are declared just like 
structs. Here’s an example:

union Number
{
 int  i;
 float f;
 char *s;
}  myNumber;

This declaration creates a union type named 
Number. It also creates an individual Number 
named myNumber. If this were a struct 
declaration, you’d be able to store three different 
values in the three fields of the struct. A union, 
on the other hand, lets you store one and only one 
of the union’s fields in the union. Here’s how this 
works.

When a union is declared, the compiler allocates 
the space required by the largest of the union’s 
fields, sharing that space with all of the union’s 
fields. If an int requires 2 bytes, a float 4 bytes, 
and a pointer 4 bytes, myNumber is allocated exactly 
4 bytes. You can store an int, a float, or a char 
pointer in myNumber. The compiler allows you to 
treat myNumber as any of these types. To refer to 
myNumber as an int, refer to:

myNumber.i

To refer to myNumber as a float, refer to:

myNumber.f

To refer to myNumber as a char pointer, refer to:

myNumber.s

You are responsible for remembering which form the 
union is currently occupying.

If you store an int in myUnion by assigning a value 
to myUnion.i, you’d best remember that fact. 
If you proceed to store a float in myUnion.f, 
you’ve just trashed your int. Remember, there are 
only 4 bytes allocated to the entire union.

In addition, storing a value as one type then reading 
it as another can produce unpredictable results. For 
example, if you stored a float in myNumber.f, 
the field myNumber.i would not be the same as 
(int)(myNumber.f).

One way to keep track of the current state of the 
union is to declare an int to go along with the 
union, as well as a #define for each of the union’s 
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fields:

#define kUnionContainsInt     1
#define kUnionContainsFloat   2
#define kUnionContainsPointer 3

union Number
{
 int  i;
 float f;
 char *s;
} myNumber;

int myUnionTag;

If you are currently using myUnion as a float, 
assign the value kUnionContainsFloat to 
myUnionTag. Later in your code you can use 
myUnionTag when deciding which form of the 
union you are dealing with:

if ( myUnionTag == kUnionContainsInt )
 DoIntStuff( myUnion.i );
else if ( myUnionTag == kUnionContainsFloat )
 DoFloatStuff( myUnion.f );
else
 DoPointerStuff( myUnion.s );

Why Use Unions?
In general, unions are most useful when dealing 
with two data structures that share a set of common 
fields, but differ in some small way. For example, 
consider these two struct declarations:

struct Pitcher
{
 char name[ 40 ];
 int  team;
 int  strikeouts;
 int  runsAllowed;
} ;

struct Batter
{
 char name[ 40 ];
 int  team;
 int  runsScored;
 int  homeRuns;
} ;

These structs might be useful if you were tracking 
the pitchers and batters on your favorite baseball 
team. Both structs share a set of common fields, 
the array of chars named name and the int named 
team. Both structs have their own unique fields 
as well. The Pitcher struct contains a pair of 
fields appropriate for a pitcher, strikeouts and 
runsAllowed. The Batter struct contains a 
pair of fields appropriate for a batter, runsScored 
and homeRuns.

One solution to your baseball-tracking program 
would be to maintain two types of structs, a 
Pitcher and a Batter. There is nothing wrong 
with this approach. There is an alternative, however. 
You can declare a single struct that contains the 
fields common to Pitcher and Batter, with a 
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union for the unique fields:

#define kMets  1
#define kReds  2

#define kPitcher  1
#define kBatter   2

struct Pitcher
{
 int   strikeouts;
 int   runsAllowed;
} ;

struct Batter
{
 int   runsScored;
 int   homeRuns;
} ;

struct Player
{
 int   type;
 char  name[ 40 ];
 int   team;
 union
 {
  struct Pitcher   pStats;
  struct Batter bStats;
 } u;
};

Here’s an example of a Player declaration:

struct Player   myPlayer;

Once you created the Player struct, you 
would initialize the type field with one of either 
kPitcher or kBatter:

myPlayer.type = kBatter;

You would access the name and team fields like this:

myPlayer.team = kMets;
printf( “Stepping up to the plate:  %s”, 
myPlayer.name );

Finally, you’d access the union fields like this:

if ( myPlayer.type == kPitcher )
 myPlayer.u.pStats.strikeouts = 20;

The u was the name given to the union in the 
declaration of the Player type. Every Player you 
declare will automatically have a union named u 
built into it. The union gives you access to either a 
Pitcher struct named pStats or a Batter 
struct named bStats. The example above 
references the strikeouts field of the pStats 
field.

unions provide an interesting alternative to 
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maintaining multiple data structures. Try them. 
Write your next program using a union or two. If 
you don’t like them, you can return them for a full 
refund.

Function Recursion
Some programming problems are best solved by 
repeating a mathematical process. For example, to 
learn whether a number is prime (see Chapter 6) 
you might step through each of the even integers 
between 2 and the number’s square root, one at a 
time, searching for a factor. If no factor is found, you 
have a prime. The process of stepping through the 
numbers between 2 and the number’s square root is 
called iteration.

In programming, iterative solutions are fairly 
common. Almost every time you use a for loop, 
you are applying an iterative approach to a problem. 
An alternative to the iterative approach is known 
as recursion. In a recursive approach, instead of 
repeating a process in a loop, you embed the process 
in a function and have the function call itself until 
the process is complete. The key to recursion is a 
function calling itself.

Suppose you wanted to calculate 5 factorial (also 
known as 5!). The factorial of a number is the 
product of each integer from  up to the number. For 
example, 5 factorial is:

5! = 5 * 4 * 3 * 2 * 1 = 120

Using an iterative approach, you might write some 
code like this:
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#include <stdio.h>

int main (int argc, const char * argv[])
{
 int   i, num;
 long  fac;

 num = 5;
 fac = 1;
 
 for ( i=1; i<=num; i++ )
  fac *= i;
 
 printf( “%d factorial is %ld.”, num, fac );

 return 0;
}

If you are interested in trying this code, you’ll find it in 
the Learn C Projects folder, under the subfolder named 
11.01 - iterate.

If you ran this program, you’d see this line printed in 
the console window:

5 factorial is 120.

As you can see from the source code, the algorithm 
steps through (iterates) the numbers  through 
5, building the factorial with each successive 
multiplication.

A Recursive Approach
You can use a recursive approach to solve the same 
problem. For starters, you’ll need a function to act as 
a base for the recursion, a function that will call itself. 
There are two things you’ll need to build into your 
recursive function. First, you’ll need a mechanism 
to keep track of the depth of the recursion. In other 
words, you’ll need a variable or parameter that 
changes, depending on the number of times the 
recursive function calls itself.

Second, you’ll need a terminating condition, 
something that tells the recursive function when it’s 
gone deep enough. Here’s one version of a recursive 
function that calculates a factorial:

long factorial( long num )
{
 if ( num > 1 )
  num *= factorial( num - 1 );
 
 return( num );
}

factorial() takes a single parameter, the 
number whose factorial you are trying to calculate. 
factorial() first checks to see whether the 
number passed to it is greater than . If not, 
factorial() calls itself, passing  less than the 
number passed into it. This strategy guarantees that, 
eventually, factorial() will get called with a 
value of .
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Figure .2 shows this process in action. The process 
starts with a call to factorial():

result = factorial( 3 );

long factorial( long num )
{
  if ( num > 1 )
    num *= factorial( num - 1 );

  return( num );
}

long factorial( long num )
{
  if ( num > 1 )
    num *= factorial( num - 1 );

  return( num );
}

long factorial( long num )
{
  if ( num > 1 )
    num *= factorial( num - 1 );

  return( num );
}

3

Fails, since num == 1

2

1

1

2 * 1

3 * 2 * 1

Figure .2 The recursion process caused by the call 
factorial(3).
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Take a look at the leftmost factorial() source 
code in Figure .2. factorial() is called with a 
parameter of 3. The if statement checks to see if the 
parameter is greater than . Since 3 is greater than , 
the statement:

num *= factorial( num - 1 );

is executed. This statement calls factorial() 
again, passing a value of n-1, or 2, as the parameter. 
This second call of factorial() is pictured in the 
center of Figure .2.

It’s important to understand that this second call 
to factorial() is treated just like any other 
function call that occurs in the middle of a function. 
The calling function’s variables are preserved while 
the called function runs. In this case, the called 
function is just another copy of factorial().

This second call of factorial() takes a value of 
2 as a parameter. The if statement compares this 
value to  and, since 2 is greater than , executes the 
statement:

num *= factorial( num - 1 );

This statement calls factorial() yet again, 
passing num-1, or , as a parameter. The third call of 

factorial() is portrayed on the rightmost side of 
Figure .2.

The third call of factorial() starts with an if 
statement. Since the input parameter was , the if 
statement fails. Thus, the recursion termination 
condition is reached. Now, this third call of 
factorial() returns a value of .

At this point, the second call of factorial() 
resumes, completing the statement:

num *= factorial( num - 1 );

Since the call of factorial() returned a value of 
, this statement is equivalent to:

num *= 1;

leaving num with the same value it came in with, 
namely 2. This second call of factorial() returns 
a value of 2.

At this point, the first call of factorial() 
resumes, completing the statement:

num *= factorial( num - 1 );

Since the second call of factorial() returned a 
value of 2, this statement is equivalent to:
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num *= 2;

Since the first call of factorial() started with 
the parameter num taking a value of 3, this statement 
sets num to a value of 6. Finally, the original call of 
factorial() returns a value of 6. This is as it 
should be, since 3 factorial = 3 * 2 *  = 6.

The recursive version of the factorial program is 
in the Learn C Projects folder, under the subfolder 
named 11.02 - recurse. Open the project and follow the 
program through, line by line.

Binary Trees
As you learn more about data structures, you’ll 
discover new applications for recursion. For example, 
one of the most-used data structures in computer 
programming is the binary tree (Figure .3). As 
you’ll see later, binary trees were just made for 
recursion. The binary tree is similar to the linked 
list. Both consist of structs connected by pointers 
embedded in each struct.

Root of
Binary Tree

Figure .3 A binary tree. Why binary? Each node in the 
tree contains two pointers.

Linked lists are linear. Each struct in the list is 
linked by pointers to the struct behind it and in 
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front of it in the list. Binary trees always start with a 
single struct, known as the root struct or root 
node. Where the linked-list structs we’ve been 
working with contain a single pointer, named next, 
binary-tree structs each have two pointers, usually 
known as left and right.

Check out the binary tree in Figure .3. Notice that 
the root node has a left child and a right child. The 
left child has its own left child but its right pointer 
is set to NULL. The left child’s left child has two 
NULL pointers. A node with two NULL pointers is 
known as a leaf node or terminal node.

Binary trees are extremely useful. They work 
especially well when the data you are trying to sort 
has a comparative relationship. This means that if 
you compare one piece of data to another, you’ll be 
able to judge the first piece as greater than, equal to, 
or less than the second piece. For example, numbers 
are comparative. Words in a dictionary can be 
comparative, if you consider their alphabetical order. 
The word iguana is greater than aardvark, but less 
than xenophobe.

Here’s how you might store a sequence of words, one 
at a time, in a binary tree. We’ll start with this list of 
words:

opulent
entropy
salubrious
ratchet

coulomb
yokel
tortuous

Figure .4 shows the word opulent added to the 
root node of the binary tree. Since it is the only word 
in the tree so far, both the left and right pointers are 
set to NULL. 

opulent

Figure .4 The word opulent is entered into the binary 
tree.

Figure .5 shows the word entropy added to the 
binary tree. Since entropy is less than opulent 
(i.e., comes before it alphabetically), entropy is 
stored as opulent’s left child.
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opulent

entropy

Figure .5 The word entropy is less than the word 
opulent and is added as its left child in the binary tree.

Next, Figure .6 shows the word salubrious 
added to the tree. Since salubrious is greater 
than opulent, it becomes opulent’s right child.

opulent

entropy salubrious

Figure .6 The word salubrious is greater than the 
word opulent and is added to its right in the tree.

Figure .7 shows the word ratchet added to the 
tree. First, ratchet is compared to opulent. 
Since ratchet is greater than opulent we follow 
the right pointer. Since there’s a word there already, 
we’ll have to compare ratchet to this word. Since 
ratchet is less than salubrious, we’ll store it as 
salubrious’s left child.

opulent

entropy

ratchet

salubrious

Figure .7  The word ratchet is greater than 
opulent but less than salubrious and is placed in 
the tree accordingly.

Figure .8 shows the binary tree after the remainder 
of the word list has been added. Do you understand 
how this scheme works? What would the binary 
tree look like if coulomb was the first word on the 
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list? The tree would have no left children and would 
lean heavily to the right. What if yokel was the 
first word entered? As you can see, this particular 
use of binary trees depends on the order of the data. 
Randomized data that starts with a value close to the 
average produces a balanced tree. If the words had 
been entered in alphabetical order, you would have 
ended up with a binary tree that looked like a linked 
list.

opulent

entropy

ratchetcoulomb

salubrious

tortuous

yokel

Figure .8 The words coulomb, yokel, and 
tortuous are added to the tree.

Searching Binary Trees
Now that your word list is stored in the binary tree, 
the next step is to look up a word in the tree. This is 
known as searching the tree. Suppose you wanted 

to look up the word tortuous in your tree. You’d 
start with the root node, comparing tortuous 
with opulent. Since tortuous is greater 
than opulent, you’d follow the right pointer to 
salubrious. You’d follow this algorithm down to 
yokel and finally tortuous.

Searching a binary tree is typically much faster than 
searching a linked list. In a linked list, you search 
through your list of nodes, one at a time, until you 
find the node you are looking for. On average, you’ll 
end up searching half of the list. In a list of 100 nodes, 
you’ll end up checking 50 nodes on average. In a list 
of 1000 nodes, you’ll end up checking 500 nodes on 
average.

In a balanced binary tree, you reduce the search 
space in half each time you check a node. Without 
getting into the mathematics (check Knuth’s The 
Art of Computer Programming, Volume 3 for more 
info), the maximum number of nodes searched is 
approximately log2n, where n is the number of 
nodes in the tree. On average, you’ll search log2n/2 
nodes. In a list of 100 nodes, you’ll end up searching 
3.32 nodes on average. In a list of 1000 nodes, you’ll 
end up checking about 5 nodes on average.

As you can see, a binary tree provides a significant 
performance advantage over a linked list.

A binary tree that contained just words may not be 
that interesting, but imagine that these words were 
names of great political leaders. Each struct might 
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contain a leader’s name, biographical information, 
perhaps a pointer to another data structure 
containing great speeches. The value, name, or word 
that determines the order of the tree is said to be the 
key.

You don’t always search a tree based on the key. 
Sometimes, you’ll want to step through every node 
in the tree. For example, suppose your tree contained 
the name and birth date of each of the presidents 
of the United States. Suppose also that the tree 
was built using each president’s last name as a key. 
Now suppose you wanted to compose a list of all 
presidents born in July. In this case, searching the 
tree alphabetically won’t do you any good. You’ll 
have to search every node in the tree. This is where 
recursion comes in.

Recursion and Binary Trees
Binary trees and recursion were made for each other. 
To search a tree recursively, the recursing function 
has to visit the current node, as well as call itself 
with each of its two child nodes. The child nodes 
will do the same thing with themselves and their 
child nodes. Each part of the recursion stops when a 
terminal node is encountered.

Check out this piece of code:

struct Node
{
 int    value;

 struct Node   *left;
 struct Node   *right;
} myNode;

Searcher( struct Node *nodePtr )
{
 if ( nodePtr != NULL )
 {
  VisitNode( nodePtr );
  Searcher( nodePtr->left );
  Searcher( nodePtr->right );
 }
}

The function Searcher() takes a pointer to a 
tree node as its parameter. If the pointer is NULL, 
we must be at a terminal node and there’s no 
need to recurse any deeper. If the pointer points 
to a Node, the function VisitNode() is called. 
VisitNode() performs whatever function you 
want performed for each node in the binary tree. In 
our current example, VisitNode() could check 
to see if the president associated with this node was 
born in July. If so, VisitNode() might print the 
president’s name in the console window.

Once the node is visited, Searcher() calls itself 
twice, once passing a pointer to its left child and once 
passing a pointer to its right child. If this version 
of Searcher() were used to search the tree in 
Figure .8, the tree would be searched in the order 
described in Figure .9. This type of search is known 
as a preorder search, because the node is visited 
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before the two recursive calls take place.

opulent

entropy

ratchetcoulomb

salubrious

tortuous

yokel

1

4

6

7

5

2

3

Figure .9 A preorder search of a binary tree. This search 
was produced by the first version of Searcher().

Here’s a slightly revised version of Searcher(). 
Without looking at Figure .0, can you predict the 
order that the tree will be searched? This version of 
Searcher() performs an inorder search of the 
tree:

Searcher( struct Node *nodePtr )
{
 if ( nodePtr != NULL )
 {
  Searcher( nodePtr->left );
  VisitNode( nodePtr );

  Searcher( nodePtr->right );
 }

}

opulent

entropy

ratchetcoulomb

salubrious

tortuous

yokel
1 4

6

7

52

3

Figure .0 An inorder search of the same tree.

Here’s a final look at Searcher(). This version 
performs a postorder search of the tree (Figure .):

Searcher( struct Node *nodePtr )
{
 if ( nodePtr != NULL )
 {
  Searcher( nodePtr->left );
  Searcher( nodePtr->right );
  VisitNode( nodePtr );
 }
}
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opulent

entropy

ratchetcoulomb

salubrious

tortuous

yokel
1

4

6

7

5

2

3

Figure . A postorder search of the same tree.

Recursion and binary trees are two extremely 
powerful programming tools. Learn how to use 
them—they’ll pay big dividends.

Function Pointers
Next on the list is the subject of function pointers. 
Function pointers are exactly what they sound like: 
pointers that point to functions. Up to now, the only 
way to call a function was to place its name in the 
source code:

MyFunction();

Function pointers give you a new way to call a 
function. Function pointers allow you to say, 
“Execute the function pointed to by this variable.” 
Here’s an example:

int (*myFuncPtr)( float );

This line of code declares a function pointer 
named myFuncPtr. myFuncPtr is a pointer to 
a function that takes a single parameter, a float, 
and that returns an int. The parentheses in the 
declaration are all necessary. The first pair tie the * to 
myFuncPtr, ensuring that myFuncPtr is declared 
as a pointer. The second pair surround the parameter 
list and distinguish myFuncPtr as a function 
pointer.

Suppose we had a function called 
DealTheCards() that took a float as a 
parameter and returned an int. This line of code 
assigns the address of DealTheCards() to the 
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function pointer myFuncPtr:

myFuncPtr = DealTheCards;

Notice that the parentheses were left off the end 
of DealTheCards(). This is critical. If the 
parentheses were there, the code would have 
called DealTheCards(), returning a value to 
myFuncPtr. You may also have noticed that the & 
operator wasn’t used. When you refer to a function 
without using the parentheses at the end, the 
compiler knows you are referring to the address of 
the function.

Now that you have the function’s address in the 
function pointer, there’s only one thing left to do—
call the function. Here’s how it’s done:

int result;

result = (*myFuncPtr)( 3.5 );

This line calls the function DealTheCards(), 
passing it the parameter 3.5, and returning the 
function value to the int result. You could also 
have called the function this way:

int result;

result = myFuncPtr( 3.5 );

Some older (non-ISO compliant) compilers can’t 
handle this form, but it is easier on the eye.

There’s a lot you can do with function pointers. You 
can create an array of function pointers. How about 
a binary tree of function pointers? You can pass a 
function pointer as a parameter to another function. 
Taking this one step further, you can create a function 
that does nothing but call other functions. Cool!

For your enjoyment, there’s a function-calling project 
in the Learn C Projects folder, inside the .03 - 
funcPtr subfolder. The program is pretty simple, but 
it should serve as a useful reference when you start 
using function pointers in your own programs.
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Initializers
When you declare a variable, you can also provide 
an initial value for the variable at the same time. The 
format for integer types, floating point types, and 
pointers is as follows:

type variable = initializer;

In this case, the initializer is just an expression. Here 
are a few examples:

float  myFloat = 3.14159;
int   myInt = 9 * 27;
int   *intPtr = &myInt;

If you plan on initializing a more complex variable, 
like an array, struct, or union, you’ll use a slightly 
different form of initializer, embedding the elements 
used to initialize the variable between pairs of curly 
braces. Consider these two array declarations:

int  myInts[] = { 10, 20, 30, 40 };
float myFloats[ 5 ] = { 1.0, 2.0, 3.0 };

The first line of code declares an array of 4 ints, 
setting myInts[0] to 0, myInts[1] to 20, 
myInts[2] to 30, and myInts[3] to 40. If you 
leave out the array dimension, the compiler makes it 
just large enough to contain the listed data.

The second line of code includes a dimension, but 
not enough data to fill the array. The first three array 
elements are filled with the specified values, but 
myFloats[3] and myFloats[4] are initialized 
to 0.0.

If you don’t provide enough values in your initializer 
list, the compiler initializes all the remaining elements 
to their default initialization value. For integers, the 
default initialization value is 0. For floats, it’s 0.0. 
For pointers, it’s NULL.

Here’s another example:

char s[ 20 ] = “Hello”;

What a convenient way to initialize an array of 
chars! Here’s another way to accomplish the same 
thing:

char s[ 20 ] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’ 
};

Once again, if you leave out the dimension, the 
compiler will allocate just enough memory to 
hold your text string, including a byte to hold the 
0 terminator. If you include the dimension, the 
compiler will allocate that many array elements, then 
fill the array with whatever data you provide. If you 
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provide more data than will fit in the array, your code 
won’t compile.

Here’s a struct example:

struct Numbers
{
 int   i, j;
 float  f;
}

struct Numbers myNums = { 1, 2, 3.01 };

As you can see, the three initializing values were 
wrapped in a pair of curly braces. This leaves 
myNums.i with a value of , myNums.j with a 
value of 2, and myNums.f with a value of 3.0. If you 
have a struct, union, or array embedded in your 
struct, you can nest a curly-wrapped list of values 
inside another list. For example:

struct Numbers
{
 int   i, j;
 float  f[ 4 ];
}

struct Numbers myNums1 = { 1, 2, {3.01, 4.01, 
5.01, 6.01} };

The Remaining Operators
If you go back to Chapter 5 and review the list of 
operators shown in Figure 5.7, you’ll likely find a few 
operators you are not yet familiar with. Most of the 
ones we’ve missed were designed specifically to set 
the individual bits within a byte. For example, the 
| operator (not to be confused with its comrade, 
the logical || operator) takes two values and “ORs” 
their bits together, resolving to a single value. This 
operator is frequently used to set a particular bit to .

Check out this code:

short   myShort;

myShort = 0x0001 | myShort;

This code sets the rightmost bit of myShort to , no 
matter what its current value. This line of code, based 
on the |= operator, does the exact same thing:

myShort |= 0x0001;

The & operator takes two values and “ANDs” their 
bits together, resolving to a single value. This 
operator is frequently used to set a particular bit to 0 
(more frequently referred to as clearing a bit).

Check out this code:
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short  myShort;

myShort = 0xFFFE & myShort;

This code sets the rightmost bit of myShort to 0, no 
matter what its current value. It might help to think 
of 0xFFFE as 1111111111111110 in binary.

This line of code, based on the &= operator, does the 
exact same thing:

myShort &= 0xFFFE;

The ^ operator takes two values and “XORs” their 
values together. It goes along with the ^= operator. 
The ~ operator takes a single value and turns all the 
’s into 0’s and all the 0’s into ’s. The &, |, ^, and ~ 
operators are summarized in Figure .2.

BA A | B A & B
11
01
10
00

11
10
10
0

A ^ B
0
1
1
0

~A
0
0
1
10

Figure .2 A summary of the &, |, ^, and ~ operators.

The previous examples assumed that a short is 
two bytes (16 bits) long. Of course, this makes for 
some implementation dependent code. Here’s a more 
portable example.

This code:

short  myShort;

myShort = (~1) & myShort;

sets the rightmost bit of myShort, no matter how 
many bytes are used to implement a short. You 
could also write this as:

myShort &= (~1);

The last of the binary operators, <<, >>, <<=, and 
>>= are used to shift bits within a variable, either 
to the left or to the right. The left operand is usually 
an unsigned variable and the right operand is 
a positive integer specifying how far to shift the 
variable’s bits.

For example, this code shifts the bits of myShort 2 
bits to the right:

unsigned short   myShort = 0x0100;

myShort = myShort >> 2; /* equal to myShort 
>>= 2; */

myShort starts off with a value of 
0000000100000000 and ends up with a value 
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of 0000000001000000 (in hex, that’s 0x0040). 
Notice that zeros get shifted in to make up for the 
leftmost bits that are getting shifted over and the 
rightmost bits are lost when they shift off the end.

These operators were designed to work with 
unsigned values only. Check with your compiler to 
see how it handles shifting of signed values.

The last two operators we need to cover are the , 
and :? operators. The , operator gives you a way 
to combine two expressions into a single expression. 
The , operator is binary and both operands are 
expressions. The left expression is evaluated first and 
the result is discarded. The right expression is then 
evaluated and its value is returned.

Here’s an example:

for ( i=0, j=0; i<20 && j<40; i++,j+=2 )
 DoSomething( i, j );

This for loop is based on two variables instead of 
one. Before the loop is entered, i and j are both set 
to 0. The loop continues as long as i is less than 20 
and j is lass than 40. Each time through the loop, i 
is incremented by  and j is incremented by 2.

The ? and : operators combine to create something 
called a conditional expression. A conditional 
expression consists of a logical expression (an 

expression that evaluates to either true or false), 
followed by the ? operator, followed by a second 
expression, followed by the : operator, followed by a 
third expression:

logical-expression ? expression2 : expression3

If the logical expression evaluates to true, 
expression2 gets evaluated and the entire 
expression resolves to the value of expression2. 
If the logical expression evaluates to false, 
expression3 gets evaluated and the entire 
expression resolves to the value of expression3.

Here’s an example:

IsPrime( num ) ? DoPrimeStuff( num ) : 
DoNonPrimeStuff( num );

As you can see, a conditional expression is really a 
shorthand way of writing an if-else statement. 
Here’s the if-else version of the previous 
example:

if ( IsPrime( num ) )
 DoPrimeStuff( num );
else
 DoNonPrimeStuff( num );

Some people like the brevity of the ?: operator 
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combination. Others find it hard to read. As always, 
make your choice and stick with it.

A word of advice: Don’t overuse the ?: operator. For 
example, suppose you wanted to use ?: to generate 
a number’s absolute value. You might write code like 
this:

int  value;

value - (value<0) ? (-value) : (value);

Though this code works, take a look at this code 
translated into its if-else form:

int  value;

if ( value<0 )

  value = (-value);

else

  value = (value);

As you can see, the ?: operator can lead you to write 
source code that you would otherwise consider pretty 
darn silly.

Creating Your Own Types
The typedef statement lets you use existing types 
to create brand new types you can then use in 
your declarations. You’ll declare this new type just 
as you would a variable, except you’ll precede the 
declaration with the word typedef and the name 
you declare will be the name of a new type. Here’s an 
example:

typedef  int  *IntPointer;

IntPointer    myIntPointer;

The first line of code creates a new type named 
IntPointer. The second line declares a variable 
named myIntPointer which is a pointer to an 
int.

Here’s another example:

typedef  float  (*FuncPtr)( int * );

FuncPtr  myFuncPtr;

The first line of code declares a new type named 
FuncPtr. The second line declares a variable named 
myFuncPtr which is a pointer to a function which 
returns a float and which takes a single int as a 
parameter.
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Enumerated Types
In a similar vein, the enum statement lets you declare 
a new type known as an enumerated type. An 
enumerated type is a set of named integer constants, 
collected under a single type name. A series of 
examples will make this clear.

enum Weekdays
{
 Monday,
 Tuesday,
 Wednesday,
 Thursday,
 Friday
};

enum Weekdays  whichDay;

whichDay = Thursday;

This code starts off with an enum declaration. The 
enum is given the name Weekdays and consists 
of the constants Monday, Tuesday, Wednesday, 
Thursday, and Friday. The second line of code 
uses this new enumerated type to declare a variable 
named whichDay. whichDay is an integer variable 
that can take on any of the Weekdays constants, as 
evidenced by the last line of code, which assigns the 
constant Thursday to whichDay.

Here’s another example:

enum Colors
{
 red,
 green = 5,
 blue,
 magenta,
 yellow = blue + 5
} myColor;

myColor = blue;

This code declares an enumerated type named 
Colors. Notice that some of the constants in the 
Colors list are accompanied by initializers. When 
the compiler creates the enumeration constants, 
it numbers them sequentially, starting with 0. In 
the previous example, Monday has a value of 0, 
Tuesday has a value of , and so on, with Friday 
having a value of 4.

In this case, the constant red has a value of 0. But 
the constant green has a value of 5. Things move 
along from there, with blue and magenta having 
values of 6 and 7, respectively. Next, yellow has a 
value of blue+5, which is .

This code also declares an enumeration variable 
named myColor, which is then assigned a value of 
blue.
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You can declare an enumerated type without the type 
name:

enum

{

  chocolate,

  strawberry,

  vanilla

};

int iceCreamFlavor = vanilla;

This code declares a series of enumeration constants 
with values of 0, 1, and 2. We can assign the constants 
to an int, as we did with iceCreamFlavor. 
This comes in handy when you need a set of integer 
constants but have no need for a tag name.

Static Variables
Normally, when a function exits, the storage for its 
variables is freed up and their values are no longer 
available. By declaring a local variable as static, 
the variable’s value is maintained across multiple calls 
of the same function.

Here’s an example:

int StaticFunc( void )
{
 static int  myStatic = 0;
 
 return myStatic++;
}

This function declares an int named myStatic 
and initializes it to a value of 0. The function 
returns the value of myStatic and increments 
myStatic after the return value is determined. 
The first time this function is called, it returns 0 
and myStatic is left with a value of . The second 
time StaticFunc() is called, it returns  and 
myStatic is left with a value of 2.

Take a few minutes and try this code out for yourself. 
You’ll find it in the Learn C Projects folder in the 
subfolder 11.04 - static.

One of the keys to this function is the manner in 
which myStatic received its initial value. Imagine 
if the function looked like this:
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int StaticFunc( void )
{
 static int   myStatic;

 myStatic = 0; /* <-- Bad idea.... */
 
 return myStatic++;
}

Each time through the function, we’d be setting the 
value of myStatic back to 0. This function will 
always return a value of 0. Not what we want, eh?

The difference between the two functions? The 
first version sets the value of myStatic to 0 by 
initialization (the value is specified within the 
declaration). The second version sets the value of 
myStatic to 0 by assignment (the value is specified 
after the declaration). If a variable is marked as 
static, any initialization is done once and once 
only. Be sure you set the initial value of your static 
variable in the declaration and not in an assignment 
statement.

One way to think of static variables is as global 
variables that are limited in scope to a single function.

More on Strings
The last topic we’ll tackle in this chapter is string 
manipulation. Although we’ve done some work with 
strings in previous chapters, there are a number 
of Standard Library functions that haven’t been 
covered. Each of these functions requires that 
you include the file <string.h>. Here are a few 
examples...

strcpy()
strcpy() is declared as follows:

char *strcpy( char *dest, const char *source 
);

strcpy() copies the string pointed to by source 
into the string pointed to by dest. strcpy() 
copies each of the characters in source, including 
the terminating 0 byte. That leaves dest as a 
properly terminated string. strcpy() returns the 
pointer dest.

An important thing to remember about strcpy() 
is that you are responsible for ensuring that source 
is properly terminated, and that enough memory is 
allocated for the string returned in dest. Here’s an 
example of strcpy() in action:
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char name[ 20 ];

strcpy( name, “Dave Mark” );

This example uses a string literal as the source string. 
The string is copied into the array name. The return 
value was ignored.

strcat()
strcat() is declared as follows:

char *strcat( char *dest, const char *source 
);

strcat() appends a copy of the string pointed to by 
source onto the end of the string pointed to by dest. 
As was the case with strcpy(), strcat() returns 
the pointer dest. Here’s an example of strcat() in 
action:

char name[ 20 ];

strcpy( name, “Dave “ );
strcat( name, “Mark” );

The call of strcpy() copies the string “Dave “ 
into the array name. The call of strcat() copies 
the string “Mark” onto the end of dest, leaving 
dest with the properly terminated string “Dave 
Mark”. Again, the return value was ignored.

strcmp()
strcmp() is declared as follows:

int strcmp( const char *s1, const char *s2 );

strcmp() compares the strings s1 and s2. 
strcmp() returns 0 if the strings are identical, 
a positive number if s1 is greater than s2, and a 
negative number if s2 is greater than s1. The strings 
are compared one byte at a time. If the strings are not 
equal, the first byte that is not identical determines 
the return value.

Here’s a sample:

if ( strcmp( “Hello”, “Goodbye” ) )
 printf( “The strings are not equal!” );

Notice that the if succeeds when the strings are not 
equal.

strlen()
strlen() is declared as follows:

size_t  strlen( const char *s );

strlen() returns the length of the string pointed 
to by s. As an example, this call:
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length = strlen( “Aardvark” );

returns a value of 8, the number of characters in the 
string, not counting the terminating zero.

More Standard Library
There is a lot more to the Standard Library than 
what we’ve covered in the book. Having made it this 
far, consider yourself an official C programmer. You 
now have a sworn duty to dig in to the C Standard 
Library page we’ve referred to throughout the book. 
In case you haven’t bookmarked it yet:

http://www.infosys.utas.edu.au/info/
documentation/C/CStdLib.html

A good place to start is with the functions declared 
in <string.h>. Find out what the difference is 
between strcmp() and strncmp(). Wander 
around. Get to know the Standard Library.

What’s Next?
Chapter 2 answers the question, “Where do you go 
from here?” Do you want to learn to create programs 
with that special Macintosh look and feel? Would 
you like more information on data structures and C 
programming techniques? Chapter 2 offers some 
suggestions to help you find your programming 
direction.

http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html
http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html
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Exercises
) What’s wrong with each of the following code 

fragments:

      a)
 struct Dog
 {
  struct Dog *next;
 } ;

 struct Cat
 {
  struct Cat *next;
 } ;

 struct Dog myDog;
 struct Cat myCat;

 myDog.next = (struct Dog)&myCat;
 myCat.next = NULL;

      b)
 int *MyFunc( void );
 typedef int (*FuncPtr)();

 FuncPtr myFuncPtr = MyFunc;

      c)
 union Number
 {
  int i;
  float f;
  char *s;
 } ;

 Number myUnion;

 myUnion.f = 3.5;

      d)
 struct Player
 {
  int type;
  char name[ 40 ];
  int team;
  union
  {
  int myInt;
  float myFloat;
  } u;
 } myPlayer;

 myPlayer.team = 27;
 myPlayer.myInt = -42;
 myPlayer.myFloat = 5.7;

      e)
 int  *myFuncPtr( int );

 myFuncPtr = main;
 *myFuncPtr();



277

Chapter 11:  
Advanced
Topics

      f )
 char s[ 20 ];

 strcpy( s, “Hello “ );

 if ( strcmp( s, “Hello” ) )
  printf( “The strings are the same!” );

      g)
 char *s;

 s = malloc( 20 );
 strcpy( “Heeeers Johnny!”, s );

      h)
 char *s;

 strcpy( s, “Aardvark” );

      i)
 void DoSomeStuff( void )
 {
  /* stuff done here */
 }

 int main( void )
 {
  int ii;

  for ( ii = 0; ii < 10; ii++ )
  DoSomeStuff;

  return 0;
 }

2) Write a program that reads in a series of integers 
from a file, storing the numbers in a binary tree in 
the same fashion as the words were stored earlier 
in the chapter. Store the first number as the root 
of the tree. Next, store the second number in 
the left branch if it is less than the first number, 
right branch if it is greater than or equal to the 
first number. Continue this process until all the 
numbers are stored in the tree.

 Now write a series of functions that print the 
contents of the tree using preorder, inorder, and 
postorder recursive searches.
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ow that you’ve mastered the fundamentals of C, 
you’re ready to dig into the specifics of Macintosh 
programming. As you’ve run the example programs 
in the previous chapters, you’ve probably noticed that 
none of the programs sport the look and feel that 
make a Mac program a Mac program.

For one thing, all of the interaction between you 
and your program focuses on the keyboard and 
the console window. None of the programs take 
advantage of the mouse. None offer color graphics, 
pull-down menus, buttons, checkboxes, scrolling 
windows or any of the thousand things that make 
Mac OS X applications so special. These things are 
all part of the Macintosh user interface.

The Macintosh User Interface
User interface is the part of your program that 
interacts with the user. So far, your user interface 
skills have focused on writing to and reading 
from the console window, using functions such 
as printf(), scanf(), and getchar(). The 
advantage of this type of user interface is that each 
of the aforementioned functions is available on every 
machine that supports the C language. Programs 
written using the Standard C Library are extremely 
portable.

On the down side, console-based user interfaces tend 
to be limited. With a console-based interface, you 
can’t use an elegant graphic to make a point. Text-
based interfaces can’t provide animation or digital 
sound. In a nutshell, the console-based interface is 
simple and, at the same time, simple to program. 
Mac OS X’s graphical user interface (GUI) offers an 
elegant, more sophisticated method of working with 
a computer.
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Objective C and Cocoa
Your Mac just wouldn’t be the same without 
windows, pull-down and pop-up menus, icons, 
push buttons, and scroll bars. You can and should 
add these user interface elements to your programs. 
Fortunately, the set of Apple developer tools you 
downloaded and installed at the beginning of this 
book include everything you need to build world-
class applications with all the elements that make the 
Mac great!

The key to working with these elements is 
understanding Objective-C and Cocoa. The 
Objective-C language is a superset of C, developed 
by the same folks who designed and built Mac OS X. 
There are a number of excellent resources available 
for learning Objective-C. One of them is right there 
on your hard drive. 

At the top level of your hard drive, find the Developer 
folder, the same one that holds the Xcode application. 
Follow this path to find the file named ObjC.pdf:

Developer/Documentation/Cocoa/Conceptual/  
ObjectiveC/ObjC.pdf

Another way to find this document is to use the 
search field in the upper right corner of your Finder 
window. Open a new Finder window, then type objc.
pdf in the search field. You should see something 
similar to the result shown in Figure 2.. Click on 
the file and the path to it will be shown at the bottom 

of the window. You can also double-click on the file 
to open it in your default PDF reader. 

Figure 2. Finding the Objective C documentation on 
your hard drive.

I love this document. It is very well written, detailed 
and, best of all, it is free! Take a few minutes to read 
through the first few pages. If you feel comfortable 
with the language and the tone, you’ve found your 
path to learning Objective-C.

If this doc makes your eyes glaze over and you start 
to feel a bit gassy, there are plenty of other ways to 
learn Objective C. If you like the experience you 
had reading this book, check out the sequel from 
SpiderWorks (http://www.spiderworks.com), called 
Learn Objective-C by Mark Dalrymple. Mark is 
one of the smartest people I know and he does an 
excellent job explaining the concepts behind the 
Objective-C language. Not free, but at $9.95, still a 
great deal.

So what’s Objective-C got that regular old C doesn’t? 
In a word, objects. Just as a struct brings variables 

http://www.spiderworks.com
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together under a single name, an object can bring 
together variables as well as functions, binding them 
together under a single class name.

Objects are incredibly powerful. Every part of the 
Mac user interface has a set of objects associated 
with it. Want to create a new window? Just create a 
new window object and the object will take care of 
all the housekeeping associated with maintaining 
a window. The window object’s functions will 
draw the contents of the window for you, perhaps 
communicating with other objects to get them to 
draw themselves within the window.

There are pull-down menu objects, icon objects, 
scrollbar objects, file objects, even objects that can 
organize other objects. Chances are, if you can 
imagine it, there’s a set of objects that will help you 
build it.

Learning Cocoa
Learning Objective-C will teach you the mechanics 
of working with objects. Once you get that down, 
you’ll turn your attention to Cocoa, Apple’s object 
library. Cocoa is an extensive collection of objects 
that will allow you to implement pretty much every 
aspect of the Mac OS X experience.

As you might expect, Apple’s developer tools contain 
some excellent Cocoa documentation. For starters, 
check out:

Developer/Documentation/Cocoa/Conceptual/
CocoaOverview/index.html

Again, some excellent doc here, and it’s free.
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Go Get ‘Em
Well, that’s about it. I hope you enjoyed reading 
this book as much as I enjoyed writing it. Above 
all, I hope you are excited about your newfound 
programming capabilities. By learning C, you’ve 
opened the door to an exciting new adventure. You 
can move on to Objective-C and Cocoa, tackle web 
programming with PHP, move into the Windows 
universe with C#, or do it all with Java. There are so 
many choices out there. And they are all based on C.

Go on out there and write some code. And keep in 
touch!
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Chapter 5

) Find the error in each of the following code 
fragments:

a. Missing quotes around “Hello, World”

b. Missing comma between two variables

c. =+ should be += (though this will compile 
with some older compilers)

d. Missing 2nd parameter to printf(). Note 
that this error won’t be caught by the compiler 
and is known as a run-time error.

e. Another run-time error. This time, you 
are missing the %d in the first argument to 
printf().

f. This time we’ve either got an extra \ or 
are missing an n following the \ in the first 
printf() parameter.

g. The left and right-hand-side of the 
assignment are switched.

h. The declaration of anotherInt is missing.

2) Compute the value of myInt after each code 
fragment is executed:

a. 70

b. -6

c. -

d. 4

e. -8

f. 2

g. 4

h. 
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Chapter 6

) What’s wrong with each of the following code 
fragments?

a. The if statement’s expression should be 
surrounded by parentheses.

b. We increment i inside the for loop’s 
expression, then decrement it in the body of the 
loop. This loop will never end!

c. The while loop has parentheses, but is 
missing an expression.

d. The do statement should follow this format:

do

 statement

while ( expression ) ;

e. Each case in this switch statement 
contains a text string, which is illegal. Also, case 
default should read default.

f. The printf() will never get called.

g. This is probably the most common mistake 
made by C programmers. The assignment 
operator (=) is used instead of the logical equality 

operator (==). Since the assignment operator is 
perfectly legal inside an expression, the compiler 
won’t find this error. An annoying little error 
you’ll encounter again and again!

h. Once again, this code will compile, but 
it likely is not what you wanted. The third 
expression in the for loop is usually an 
assignment statement - something to move i 
towards its terminating condition. The expression 
i*20 is useless here, since it doesn’t change 
anything.

2) Look in the folder 06.05 - nextPrime2.

3) Look in the folder 06.06 - nextPrime3.
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Chapter 7

) Predict the result of each of the following code 
fragments:

a. Final value is 25.

b. Final value is 52. Try changing the for loop 
from 2 to 3. Notice that this generates a number 
too large for a 2-byte int to hold. Now change 
the for loop from 3 to 4. This generates a 
number too large for even a 4-byte int to hold. 
Be aware of the size of your types!

c. Final value is 024.

2) Look in the folder 07.06 - power2.

3) Look in the folder 07.07 - nonPrimes.

Chapter 8

) What’s wrong with each of the following code 
fragments:

 a. If the char type defaults to signed (very 
likely), c can only hold values from -28 to 27. 
Even if your char does default to unsigned, 
this is dangerous code. At the very least, use an 
unsigned char. Even better, use a short, 
int, or long.

 b. Use %f, %g, or %e to print the value of a 
float, not %d.

 c. The text string “a” is composed of two 
characters, both ‘a’ and the terminating zero 
byte. The variable c is only a single byte in size. 
Even if c were 2 bytes long, you can’t copy a text 
string this way. Try copying the text one byte at a 
time into a variable large enough to hold the text 
string and its terminating zero byte.

 d. Once again, this code uses the wrong 
approach to copying a text string, and once again 
there is not enough memory allocated to hold the 
text string and its zero byte.

 e. The #define of kMaxArraySize must 
come before the first non-#define reference to 
it.

 f. This definition:
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 char c[ kMaxArraySize ];

 creates an array ranging from c[0] to 
c[kMaxArraySize-1]. The reference to 
c[kMaxArraySize] is out of bounds.

 g. The problem occurs in the line:

 cPtr++ = 0;

 This line assigns the pointer variable cPtr 
a value of 0 (making it point to location 0 in 
memory) then increments it to  (making it point 
to location  in memory). This code will not 
compile. Here’s a more likely scenario:

 *cPtr++ = 0;

 This code sets the char that cPtr points to to 0, 
then increments cPtr to point to the next char 
in the array.

 h. The problem here is with the statement:

 c++;

 You can’t increment an array name. Even if you 
could, if you increment c, you no longer have 
a pointer to the beginning of the array! A more 
proper approach is to declare an extra char 

pointer, assign c to this char pointer, then 
increment the copy of c, rather than c itself.

 i. You don’t need to terminate a #define 
with a semicolon. This statement defines 
“kMaxArraySize” to “200;”, probably not 
what we had in mind.

2) Look in the folder 08.08 - dice2.

3) Look in the folder 08.09 - wordCount2.
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Chapter 9

) What’s wrong with each of the following code 
fragments:

 a. The semicolon after employeeNumber is 
missing.

 b. This code is really pretty useless. If the first 
character returned by getchar() is ‘\n’, the 
; will get executed, otherwise the loop just exits. 
Try changing the == to != and see what happens.

 c. This code will actually work, since the double-
quotes around the header file name tell the 
compiler to search the local directory in addition 
to the places it normally searches for system 
header files. On the other hand, it is considered 
better form to place angle brackets around a 
system header file like <stdio.h>.

 d. The name field is missing its type. As it turns 
out, this code will compile, but it might not do 
what you think it does. Since the type is missing, 
the C compiler assumes you want an array of 
ints. Even though it compiles, this is bad form!

 e. next and prev should be declared as 
pointers.

 f. There are several problems with this code. 
First, the while loop is completely useless. Also, 
the code should use ‘\0’ instead of 0 (though 
that’s really a question of style). Finally, by the 

time we get to the printf(), line points 
beyond the end of the string!

2) Look in the folder 09.06 - cdTracker2.

3) Look in the folder 09.07 - cdTracker3.
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Chapter 10

) What’s wrong with each of the following code 
fragments:

 a. The arguments to fopen() appear in 
reverse order.

 b. Once again, the arguments to fopen() 
are reversed. In addition, the first parameter to 
fscanf() contains a prompt, as if you were 
calling printf(). Also, the second parameter 
to fscanf() is defined as a char, yet the %d 
format specifier is used, telling fscanf() to 
expect an int. This will cause fscanf() to 
store an int-sized value in the space allocated 
for a char. Not good!

 c. line is declared as a char pointer instead of 
as an array of chars. No memory was allocated 
for the string being read in by fscanf(). Also, 
since line is a pointer, the & in the fscanf() 
call shouldn’t be there.

 d. This code is fine except for one problem. The 
file is opened for writing, yet we are trying to read 
from the file using fscanf().

2) Look in the folder 0.04 - fileReader

3) Look in the folder 0.05 - cdFiler2

Chapter 11

) What’s wrong with each of the following code 
fragments:

 a. In the next to last line, the address of myCat 
is cast to a struct. Instead, the address should 
be cast to a (struct Dog *).

 b. The typedef defines FuncPtr to be 
a pointer to a function that returns an int. 
MyFunc() is declared to return a pointer to an 
int, not an int.

 c. The declaration of Number is missing the 
keyword union. Here’s the corrected declaration:

 union Number myUnion;

 d. The Player union fields must be accessed 
using u. Instead of myPlayer.myInt, refer to 
myPlayer.u.myInt. Instead of myPlayer.
myFloat, refer to myPlayer.u.myFloat.

 e. First off, myFuncPtr is not a function 
pointer and not a legal l-value. As is, the 
declaration just declares a function named 
myFuncPtr. This declaration fixes that problem:

 int  (*myFuncPtr)( int );
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 Next, main() doesn’t take a single int as a 
parameter. Besides that, calling main() yourself 
is a questionable practice. Finally, to call the 
function pointed to by myFuncPtr, use either 
myFuncPtr(); or (*myFuncPtr)(); 
instead of *myFuncPtr();

 f. strcmp() returns zero if the strings are 
equal. The if would fail if the strings were the 
same. The message passed to printf() is 
wrong.

 g. The parameters passed to strcpy() should 
be reversed.

 h. No memory was allocated for s. When 
strcpy() copies the string, it will be writing 
over unintended memory.

 i. This is a common problem that tons of 
people, including battle-scarred veterans, run 
into. The function call in the loop is not actually a 
function call. Instead, the address of the function 
DoSomeStuff is evaluated. Because this address 
is not assigned to anything or used in any other 
way, the result of the evaluation is discarded. The 
expression “DoSomeStuff;” is effectively a no-
op, making the entire loop a no-op.

2) Look in the folder .05 - treePrinter.
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