
Table Of Contents

Copyright 2005 SpiderWorks, LLC. All rights reserved. Unauthorized distribution, duplication, or resale of all or any portion of this ebook is strictly prohibited.

$14.95 USD ISBN: 0-9744344-1-8

Version 1.0 - Check for Updates

SpiderWorks
For more great ebooks, order online
at http://www.spiderworks.com

 Chapter 5: C Basics: Variables
and Operators 44
 An Introduction to Variables 44
 Operators 50
 Using Parentheses () 54
 Operator Precedence 55
 Sample Programs 57
 Sprucing Up Your Code 69
 Exercises 74

Chapter 6: Controlling Your
Program's Flow 75
 Flow Control 75
 Expressions 77
 Statements 83
 Exercises 105

Chapter 7: Pointers and Parameters 106
 What is a Pointer? 106
 Pointer Basics 109
 Function Parameters 115
 What Does All This Have to
 Do with Pointers? 119
 Global Variables and
 Function Returns 122
 More Sample Programs 128
 Exercises 136

About This eBook 3

How To Use This eBook 4

Installing the Project Files 5

Chapter 1: Welcome Aboard 6
 Who is This Book For? 7

Chapter 2: Go Get the Tools! 8

Chapter 3: Programming Basics 19
 Programming 19
 The Programming Process 22

Chapter 4: C Basics: Functions 26
 C Functions 26
 Calling a Function 30
 ISO C and the Standard Library 32
 Same Program, Two Functions 34
 Another Example 38
 Generating Some Errors 39
 C is Case Sensitive 41
 Exercises 43

http://www.spiderworks.com/books/learncmac.php

Table Of Contents Continued

Chapter 11: Advanced Topics 247
 What is Typecasting? 247
 Unions 251
 Function Recursion 254
 Binary Trees 258
 Function Pointers 264
 Initializers 266
 The Remaining Operators 267
 Creating Your Own Types 270
 Static Variables 272
 More on Strings 273
 Exercises 276

Chapter 12: Where Do I Go
From Here? 278
 The Macintosh User Interface 278
 Go Get ‘Em 281

Appendix A: Answers to
Selected Exercises 282

License Agreement 292

Chapter 8: Variable Data Types 138
 Other Data Types 138
 Working With Characters 147
 Arrays 153
 Danger, Will Robinson!!! 159
 Text Strings 160
 The #define 166
 Exercises 175

Chapter 9: Design Your Own
Data Structures 177
 Structures 177
 Model A: Three Arrays 178
 Back to Model A 186
 Model B: The Data Structure
 Approach 187
 Passing a Struct as a Parameter 192
 Allocating Your Own Memory 197
 Working With Linked Lists 200
 Exercises 213

Chapter 10: Working with Files 214
 What is a File? 215
 Working With Files, Part One 215
 Working With Files, Part Two 224
 Working With Files, Part Three 235
 Exercises 245

About This eBook

3

The Author
Dave Mark is a long-time Mac
developer and author and has
written a number of books
on Macintosh development,
including Learn C on the
Macintosh, The Macintosh
Programming Primer series, and
Ultimate Mac Programming. Dave is the Editor-in-
Chief of MacTech Magazine and has been writing for
MacTech since its birth.

The Publisher
Optimized for easy on-screen reading, yet perfect
for printing, SpiderWorks eBooks are uniquely
formatted and hyperlinked for fast access and
quick learning.

Cover Design: Mark Dame

Interior Page Design: Robin Williams

PDF Production: Dave Wooldridge

How To Use This eBook

4

On-Screen Viewing
We recommend using Adobe Acrobat or the free
Adobe Reader to view this ebook. Apple Preview and
other third-party PDF viewers may also work, but
many of them do not support the latest PDF features.
For best results, use Adobe Acrobat/Reader.

To jump directly to a specific page, click on a topic
from either the Table of Contents on the first page
or from the PDF Bookmarks. In Adobe Reader, the
PDF Bookmarks can be accessed by clicking on the
Bookmarks tab on the left side of the screen. In
Apple Preview, the PDF Bookmarks are located in a
drawer (Command-T to open).

If your mouse cursor turns into a hand icon when
hovering over some text, that indicates the text is a
hyperlink. Table of Contents links jump to a specific
page within the ebook when clicked. Text links
that begin with “http” or “ftp” will attempt to access
an external web site or FTP server when clicked
(requires an Internet connection).

Printing
Since SpiderWorks ebooks utilize a unique horizontal
page layout for optimal on-screen viewing, you
should choose the “Landscape” setting (in Page
Setup) to print pages sideways on standard 8.5” x ”
paper. If the Orientation option does not label the
choices as “Portrait” and “Landscape”, then choose
the visual icon of the letter "A" or person’s head
printed sideways on the page (see example below).

http://www.adobe.com/products/acrobat/readstep2.html
http://www.adobe.com/products/acrobat/readstep2.html

Installing the Project Files

5

Requirements
The collection of companion project files from this
book are contained in a download called LearnC-
Projects.sit, which can be downloaded from the
SpiderWorks Customer Download Center at:

http://www.spiderworks.com/extras/

To login, you will need your Customer Username
and Password that was listed in your order
confirmation e-mail.

Installation
Once you have downloaded and decompressed
LearnC-Projects.sit (using Stuffit Expander), you
will see a directory called Learn C Projects. Nested
inside that directory are further subdirectories
labeled for the chapter to which the project files
apply. Not all chapters have project files in the
Learn C Projects collection. Move the Learn C
Projects directory to a convenient location on your
hard disk from which you can open the files with
Apple's Xcode Tools.

http://www.spiderworks.com/extras/

W
Chapter 1 Welcome Aboard

6

elcome! Chances are, you are reading this because
you love the Macintosh. And not only do you love
the Mac, but you also love the idea of learning how
to design and develop your very own Mac programs.

You’ve definitely come to the right place.

This book assumes that you know how to use
your Macintosh. That’s it. You don’t need to know
anything about programming. Not one little bit. We’ll
start off with the basics and each step we take will be
a small one to make sure that you have no problem
following along.

This is the first in a series of books designed to teach
you how to design and build your own Macintosh
applications. The first book will focus on the basics of
programming. At the same time, you’ll learn C, one
of the most widely used programming languages in
the world. And once you know C, you’ll have a leg up
on learning programming languages like C++, Java,
Objective-C and Microsoft’s new C# (pronounced C-
sharp), all of which are based on C. If you are going
to write code these days, chances are you’ll be writing

it in C or in one of these other languages.

Once you get through the first few books, you’ll be
ready to move on to object oriented programming
and Objective-C, the official language of Mac OS
X. Not to worry. Each book takes the same basic
approach: small steps, nobody gets lost. You can
definitely do this!

7

Chapter 1:
Welcome
Aboard

Who is This Book For?
When I wrote the very first edition of Learn C
back in 99, I was writing with college students in
mind. After all, college was where I really learned to
program. Hrm. Seems I was way off. My first clue
that I had underestimated my audience was when I
started getting emails from fifth graders who were
making their way through the book. Fifth graders!
And not just one. Lots of 9, 0, year old kids were
digging in and learning to program. Cool! And the
best part of all was when these kids started sending
me actual shipping products that they created. You
can’t imagine how proud I was and still am.

Over the years, I’ve heard from soccer moms,
hobbyists, even from folks who were using the Mac
for the very first time, all of whom made their way
through Learn C and came out the other end, proud,
strong, and full of knowledge.

So what do you need to know to get started?
Although it is possible to learn C just by reading a
book, you’ll get the most out of this book if you run
each example program as you encounter it in the
book. To do this, you’ll need a Macintosh running
Mac OS X (preferably version 0.3 or later) and
an internet connection. You’ll need the internet
connection to download the free tools Apple
has graciously provided for anyone interested in
programming the Mac.

If you know nothing about programming, don’t
worry. The first few chapters of this book will bring

you up to speed. If you have some programming
experience (or even a lot), you might want to skim
the first few chapters, then dig right into the C
fundamentals that start in Chapter 3.

Ready to get started? Let’s go…

B
Chapter 2 Go Get the Tools!

8

efore we dig into the specifics of programming, you’ll
need to download a special set of tools from Apple’s
web site. The good news is, these tools are absolutely
free – Cool! And more importantly, Apple’s tools
give you absolutely everything you’ll need to create
world class Macintosh programs, whether they be
written in C, Objective C, Java, or even C++. And did
I mention that these awesome tools are free?

Before you start downloading the tools, be aware that
this is one big download. The version I downloaded
today was broken into 13 segments, most of which
were about 29 megabytes each, for a total download
of more than 372 megabytes. Ouch!

Obviously, you won’t want to tackle this task via a
dialup, and you’ll want to make sure you have plenty
of hard drive space available before you begin.

If you don’t have the bandwidth, there is an
alternative! Follow all the steps for creating an
account and logging in to Apple’s ADC web site
below. Then, instead of clicking on the Download
Software link, click on the Purchase link instead. At the
bottom-right of the page that appears, click on the
Developer Tools button. This will take you to a page
where you can buy the tools CD. Cool!

9

Chapter 2:
Go Get the
Tools!

To gain access to these tools, go to Apple’s web site
and sign up as a member of the Apple Developer
Connection (ADC) program. Here’s a link to the front
page of the ADC site:

http://developer.apple.com

You’ll want to bookmark this page in your browser
so you can refer to it later. In fact, you might want to
create a Learn C bookmark folder in your browser
just for web sites we mention in this series.

Don’t let the sheer volume of information on this site
overwhelm you. Over time, it will start to make a lot
more sense. For now, let’s get in, get the tools, then
get out. No need to linger just yet.

Create an ADC Account
Before Apple will let you download the tools, you’ll
first need to join ADC (remember, it’s free!) To join,
click on the Not a Member? link in the grey bar
towards the top of the page. This will bring you to
the Membership Overview page. This page tells you
about the different ADC memberships available. For
now, we’ll take the Online membership option. The
Online option is free and still gives us access to the
tools we’ll need.

To start the sign up process, click on the blue link
that says Apple Developer Connection member or
just go to this page:

http://connect.apple.com

Click the button labeled Join ADC Now.

Read the license agreement, then click on the Agree
button.

Next, you’ll be prompted to enter your name and
email address and to select an Apple ID and a
password. Pretty straightforward.

Once you’ve entered and confirmed your password,
click the Continue button.

If your Apple ID is already taken, a red error message
will appear. Pick a different Apple ID and try again.
Eventually, you’ll find one that isn’t already used.

The next step is to provide clues in case you forget
your password. You’ll provide your birth date, a
question Apple can ask you, and the answer to the
question. Click the Continue button.

Next, you’ll come to a page that asks you to fill out
your Developer Account Profile. Do this, then click
the Save button.

That should do it. Congratulations, you are now a
proud member of Apple Developer Connection! Be
sure to copy down your Apple ID and your password.
You’ll need this info every time you come back to the
site.

http://developer.apple.com
http://connect.apple.com

10

Chapter 2:
Go Get the
Tools!

Download the Tools
Once you have your Apple ID, you can login to the
ADC site by going to this link:

http://connect.apple.com

This is the page with the Join ADC Now button. On
the right side of that page is a place for you to type
in your Apple ID and Password. Click the Continue
button to login.

Figure 2. Once logged in to ADC, click this link to
download software.

Once you are logged in, you’ll see a list of links
similar to those shown in Figure 2-. Click on the
Download Software link. This will take you to a page
listing the most recent tools available for download.
Scroll down the list looking for something titled
Xcode Tools, followed by a version number.

If you don’t see any Xcode downloads available
on the main Download Software page, click on
the Developer Tools link that appears below the
Download Software link to reveal a more extensive
list of downloads (see Figure 2-2).

Figure 2.2 You may find Xcode in the Developer Tools
section.

Figure 2-3 shows the download section for Xcode
Tools v.5, which was the most recent version of
Xcode available when I wrote this chapter.

http://connect.apple.com

11

Chapter 2:
Go Get the
Tools!

Figure 2.3 When I wrote this chapter, this was the latest
version of Xcode available for download.

Downloading the Segments
At this point, you’ve signed up for an ADC account,
logged in, and located the Xcode tools. Chances are,
you’ll see something like the screenshot shown in
Figure 2-3. Feel free to download the Read Me, but
the real goal is to download either the full CD image,
hidden behind the first Download button, or the set
of segments that make up the Xcode Tools .5 CD,
hidden behind the second Download button.

When you click on either Download button, Mac
OS X will attempt to connect to an FTP server using
whatever you have defined as your default FTP
application. If you’ve never used an FTP application
before, you might want to either find an FTP-savvy
buddy who can help you through this process or click
the Purchase link (as described at the beginning of
the chapter) and order the Xcode CD from Apple.

12

Chapter 2:
Go Get the
Tools!

Note that your browser may try to handle FTP
requests all by itself. Safari, for example, will
download single files without help, but will hand off a
request for a directory of files to the default FTP client.

If you don’t own an FTP application, the Finder can
do the job for you. For example, when I clicked on
the Download button in my browser window, the
window shown in Figure 2-4 appeared, then a server
named segments appeared on my desktop, just like a
newly mounted hard drive.

Figure 2.4 This window appears when the Finder tries
connecting to Apple’s server.

If you double-click on the segments icon, a Finder
window will appear listing all the files you need
to download. Create a new folder (I called mine
Xcode parts) and drag all the files from the segments
window to that new folder. The files for Xcode .5
took up about 372 megabytes of hard drive space
(be sure you have enough space on your hard drive
before you start – In fact, be sure you have at least
a couple of gigabytes free, just to be safe) and took
about 45 minutes to copy using a cable modem. Your
mileage may vary!

That said, I’ve found that using the Finder as an
FTP client a hit-or-miss proposition. An application
specifically written to do FTP will get the job done
much more quickly.

There are a number of excellent FTP clients that
run under Mac OS X. One that I’ve been using for a
number of years is called Interarchy. You can find it at:

http://www.interarchy.com

Interarchy is amazing! It handles pretty much
everything I throw at it (including FTP, SFTP, HTTP,
ping, traceroute, DNS lookup, and packet sniffing),
and is both fast and reliable. When you download
Interarchy, it automatically runs in demo mode
allowing you to test it before you buy it.

If you do run Interarchy, when it asks you if you want
it to be your default FTP application, say yes. Now, if
you go back to the ADC site and click the Download
button again, your web browser should use
Interarchy to open the server instead of the Finder.

Putting Mr. Dumpty Back Together Again
Whether you used the Finder or an FTP client like
Interarchy, at this point, you should have a folder
on your hard drive containing one file ending with
.dmg and a series of consecutive files ending with
.dmgpart. Figure 2-5 shows my Finder listing after
I downloaded the parts that make up the Xcode
version .5 installer. If you downloaded the archive as
a single piece, instead of in segments, you can skip

http://www.interarchy.com

13

Chapter 2:
Go Get the
Tools!

down a few paragraphs to where I tell you to double-
click the Xcode Tools icon.

Important - Things change! The most recent version
of the ADC web site only offers Xcode Tools v1.5 as
a single archive, not as a series of .dmgparts. By the
time you read this, there may be a newer version of
Xcode, done as a single file or multiple parts. Use your
noodle, download the latest, you’ll be fine. I’ll make
sure that the Learn C projects are always updated
with the latest and greatest release (i.e., non-beta)
version of Xcode.

Note that there is only one .dmg file. Once all the
pieces are in place, drop the .dmg.bin file onto the
StuffIt Expander icon.

Figure 2.5 The segments that go together to make the
Xcode .5 installer.

14

Chapter 2:
Go Get the
Tools!

Looking for StuffIt Expander? Chances are good it is
already on your hard drive. If not, you’ll find the latest
version here:

http://www.stuffit.com/mac/

StuffIt Expander will do the right thing. First, it will
search to make sure you have all the parts needed
to reassemble the Xcode installer. Then, it will
start patching things together until the .dmg file is
reassembled. A .dmg file is a mountable disk-image,
like a fake hard drive. Once the .dmg file is mounted,
a new volume should appear on your desktop with
the name Xcode Tools (or something quite similar).

Double-click the Xcode Tools disk icon. A new Finder
window will appear, listing the contents of the disk.
There will be a series of PDF files that talk about
the contents of the package, folders containing the
files to be installed, and a master installer file called
Developer.mpkg (see Figure 2-6).

Figure 2.6 The Xcode installer and associated files.
Woohoo!

This is the moment you’ve been waiting for! Double-
click Developer.mpkg and install the tools. As you
would with any installer, click Continue a few times,
then click Agree (assuming you agree with the
license agreement). Select a hard drive on which to
perform the installation (you’ll need about 00 Meg
of additional space), type in your Admin password
when prompted for it, then you are off to the races.

Congratulations! You’ve just installed the Mac OS X
developer tools.

If you run into problems during this process, be sure
to head over to http://www.spiderworks.com and
check out the support page for this book.

http://www.stuffit.com/mac/
http://www.spiderworks.com

15

Chapter 2:
Go Get the
Tools!

Take Your Tools for a Test Drive
Now that you’ve installed the tools, let’s explore.
The first thing to note is the new Developer folder at
the top level of your hard drive. Go ahead and take
a look. It is at the same level as your Applications
folder. As you make your way down your
programming path, you will spend a lot of time in the
Developer folder.

Unix folks have a very efficient system for describing
where files live. Files and folders at the top level of
your hard drive start with a slash character “/”, then
follow that with the file or folder name. Thus, we
might refer to /Applications or /Developer. To dive
deeper, add another slash and another file or folder
name. For example, inside the Applications folder is
a Utilities subfolder and, inside that, is an application
named Terminal. Unix folks would refer to the
Terminal application using this path:

/Applications/Utilities/Terminal

Get the idea?

The tools package you just installed came with its
own set of applications. They live inside their own
Applications folder within the Developer folder. Unix
folks refer to this folder as /Developer/Applications/.
We’ll use this Unix path naming convention
throughout the book. It really works well.

In the Finder, navigate into /Developer/Applications/.
Inside that folder, you’ll find several subfolders along

with two applications, Interface Builder and Xcode.
Interface Builder gives you a powerful set of tools
you can use to add the Mac OS X look and feel to
your programs. In this book, we’ll be focusing on the
basics of programming. All of our programs will run
in a single scrolling text window. We’ll learn what
we need to learn to add elements such as windows,
menus, scrollbars, buttons, checkboxes and the like
in later volumes in this series. For now, you can
ignore Interface Builder.

The tool we will be focused on in this book is Xcode.

As you’ll learn throughout the book, Xcode is a
program that helps you organize and build your own
programs. If you’ve never programmed before, don’t
worry about the specifics. At this point, our goal is
to run Xcode, create a test program, and run the test
program, just to verify that we have installed Xcode
properly.

Double-click on the Xcode icon.

Xcode organizes all the files you use to build a
specific program using something called a project
file. Depending on your default settings, Xcode may
prompt you to open an existing project when it
launches. Since we’ll be creating a new test project
from scratch, click cancel.

To create a new project, select New Project… from
the File menu. Xcode will bring up a new window
asking you to select the project type that you want
to create. As you can see in Figure 2-7, there are a lot

16

Chapter 2:
Go Get the
Tools!

of different project types. You can create projects for
AppleScript, Java, C++, Objective-C, even projects
to build your very own screen saver, to name but
a few. And, of course, you can create a project for
programming in C.

Figure 2.7 Xcode prompting you to determine what type
of new project you want to create.

To do this, scroll down past the Application and
Bundle sections to the section labeled Command
Line Utility and select the Standard Tool project.
Notice (Figure 2-7) that Standard Tool is under
the Tool category. If you can’t find the words
Standard Tool, try clicking the grey triangle to the

left of the word Command Line Utility to reveal the
subcategories below it.

Once you’ve selected Standard Tool, click on the
Next button on the bottom right to move to the next
step.

A new pane appears allowing you to give your
project a name and select its location. In the Project
Name field, type in the name 02-test (see Figure 2-8).
The 02 is for chapter 2 and the test is for, well, test.

Next, we’ll fill in the Project Directory field. We could
edit the text field and type in a Unix path name, but
easier still, we can click the Choose… button to select
a folder. Go ahead and click the Choose… button.

17

Chapter 2:
Go Get the
Tools!

Figure 2.8 Where to save your new project? Click the
Choose… button to select a destination.

When you click the Choose… button, you will be
prompted to select a folder in which to store your
projects. Start by navigating to your Documents
folder, then click the New Folder button (lower left
corner) and create a new folder named Projects.
Once the Projects folder is created, select it and click
the Choose button.

Now the Project Directory field should look like
the one shown in Figure 2-9. We’ve asked Xcode
to create a new C project in a folder name 02-test
within our newly created Projects folder.

Figure 2.9 We’ll create all our projects in our new
Projects folder.

Hmmm. What’s that weird character at the beginning
of the Project Directory field? As it turns out, in the
Unix world the tilde character stands for your home
directory, the directory assigned to you when your
Mac OS X account was created on your machine.

For example, on my machine my login name
is davemark and my home directory is /Users/
davemark/. So on my machine, the tilde stands
for /Users/davemark/. On my machine, the path ~/
Documents/Projects/02-test/ is shorthand for /Users/
davemark/Documents/Projects/02-test/.

It’s also worth noting that in Unix, directory names
are traditionally ended with a slash, while file names
are not. So Documents/MyDirectory/ should end with
a slash, while Documents/MyDirectory/myfile should
not end with a slash.

Make sense?

Now that you’ve specified a project name and
directory, click the Finish button to create your new
project.

18

Chapter 2:
Go Get the
Tools!

Running the Project
When you click the Finish button, Xcode will create
a project window you’ll use to manage your new
project. The project window (Figure 2-0) is jam-
packed with all sorts of buttons, controls, and text.
Don’t worry about all that stuff. Over time, you’ll
become quite comfortable with everything you see.
For now, all you need to know is that this project
window shows you that Xcode is installed properly.

Figure 2.0 Your new project window.

Our test program puts up a window, displays the
text, Hello, World!, then exits gracefully. We didn’t
have to do anything special to the project. When
Xcode creates a new C project, that’s what comes
right out of the box.

Let’s give it a try.

Select Build and Run from the Build menu. Xcode
will do a little thinking, a little behind the scenes
action, and will put up a window displaying the
following text:

Hello, World!

02-test has exited with status 0.

This is perfect. Exactly what we were looking for.

Notice that instead of showing a picture of the results
window, we just listed the text that appeared in the
window. Get used to this. We’ll use this approach
throughout the rest of this book. Every program
we write in this book will produce text as its results.
We’ve set the text in a special font so you can tell it
apart from the rest of the book text.

 Let’s Move On
Well, that’s about it for this chapter. You’ve
accomplished a lot. You’ve joined ADC, logged in,
downloaded all the pieces that make up the Xcode
installer, reassembled the installer, installed Xcode,
created a new project, and built and run your very
first program. Awesome! I’d say that calls for a nice,
cool beverage of your choice and a well deserved
round of applause.

Feel free to quit Xcode if you like. We’ll fire it up
again in the next chapter. See you there!

B
Chapter 3 Programming Basics

19

efore we dig into C programming specifics, we’ll
spend a few minutes reviewing the basics of
programming. We’ll answer such questions as “Why
write a computer program?” and “How do computer
programs work?” We’ll look at all of the elements that
come together to create a computer program, such as
source code, a compiler, and the computer itself.

If you’ve already done some programming, skim
through this chapter. If you feel comfortable with the
material, skip ahead to Chapter 4. Most of the issues
covered in this chapter will be C-independent.

Programming
Why write a computer program? There are many
reasons. Some programs are written in direct
response to a problem too complex to solve by
hand. For example, you might write a program to
calculate the constant π to 5,000 decimal places, or
to determine the precise moment to fire the boosters
that will safely land the Mars Rover.

Other programs are written as performance aids,
allowing you to perform a regular task more
efficiently. You might write a program to help you
balance your checkbook, keep track of your baseball
card collection, or lay out this month’s issue of
Dinosaur Today.

Whatever their purpose, each of these examples
shares a common theme. They are all examples of the
art of programming. Your goal in reading this book
is to learn how to use the C programming language
to create programs of your own. Before we get into
C, however, let’s take a minute to look at some other
ways to solve your programming problems.

20

Chapter 3:
Programming
Basics

Some Alternatives to C
As mentioned in Chapter , C is one of the most
popular programming languages around. There’s
very little you can’t do in C (or in some variant of
C), once you know how. On the other hand, a C
program is not necessarily the best solution to every
programming problem.

For example, suppose you are trying to build a
database to track your company’s inventory. Rather
than writing a custom C program to solve your
problem, you might be able to use an off-the-shelf
package like FileMaker Pro or, perhaps, a Unix-based
solution like MySQL or PostgreSQL to construct
your database. The programmers who created
these packages solved most of the knotty database
management problems you’d face if you tried to write
your program from scratch. The lesson here: Before
you tackle a programming problem, examine all the
alternatives. You might find one that will save you
time, money, or that will prove to be a better solution
to your problem.

Some problems can be solved using the Mac’s
built-in scripting language, AppleScript. Just like C,
AppleScript is a programming language. Typically,
you’d use AppleScript to control other applications.
For example, you might create an AppleScript that
gets your daily calendar from iCal, formats it just the
way you like it using TextEdit, then prints out the
results. Or, perhaps, you might write a script that
launches Safari and opens each of your bookmarked

news sites, each in a separate window. If you can use
existing applications to do what you need, chances
are good you can use AppleScript to get the job done.

Want to mess with AppleScript? Everything you need
to do just that should already be on your hard drive.
Look in your Applications folder for an AppleScript
subfolder. Inside the AppleScript subfolder, you’ll find
an application named Script Editor. Script Editor lets
you create and run AppleScript scripts.

To try your hand at scripting, launch TextEdit (it’s in
the Applications folder) and type a few lines of text
into the text editing window that appears (see Figure
3-1). Next, launch Script Editor, type in this script and
press the Run button:

tell application “TextEdit”

get the fifth word of front
document

end tell

If all goes well, the fifth word from the TextEdit
window should appear in the results pane at the
bottom of the Script Editor window (see Figure 3-2).
If you are interested in learning more, check out the
brand new edition of Danny Goodman’s AppleScript
Handbook, updated for Mac OS X. You’ll find it on the
http://www.spiderworks.com web site.

http://www.spiderworks.com

21

Chapter 3:
Programming
Basics

Figure 3. First, I opened TextEdit and typed in a few
lines of text…

Figure 3.2 Next, I typed this script in to Script Editor and
clicked the Run button. The result is shown at the bottom
of the window.

Some applications feature their own proprietary
scripting language. For instance, Microsoft Excel lets

you write programs that operate on the cells within
a spreadsheet. Some word processing programs let
you write scripts that control just about every word
processing feature in existence. Though proprietary
scripting languages can be quite useful, they aren’t
much help outside their intended environments.
You wouldn’t find much use for the Excel scripting
language outside Excel, for example.

What About C++, Java, and C#?
A while back, there was a big debate in the
programming community as to which programming
language to learn first. Naturally, the C++ people
thought that C++ was by far the best language to
start with. Java and C# people felt the same way
about Java and C#. But the truth is, each of those
languages is based on C. And if you learn C first,
you’ll have a huge leg up on learning any of these
languages. And when the next C-based languages hit
the streets (there are several in the works), you’ll have
a leg up on them, as well.

Learn C first, and all that C knowledge will count
towards your C++, Java, and C# education.

22

Chapter 3:
Programming
Basics

The Programming Process
In Chapter 2, you installed the Macintosh developer
tools and went through the process of creating a
project, then building and running the project. Let’s
take a look at the programming process in a bit more
detail.

Source Code
No matter their purpose, most computer programs
start as source code. Your source code will
consist of a sequence of instructions that tells the
computer what to do. Source code is written in a
specific programming language, such as C. Each
programming language has a specific set of rules that
defines what is and isn’t “legal” in that language.

Your mission in reading this book is to learn how to
create useful, efficient, and, best of all, legal C source
code.

If you were programming using everyday English,
your source code might look like this:

Hi, Computer!
Do me a favor. Ask me for five numbers, add
them together, then tell me the sum.

If you wanted to run this program, you’d need a
programming tool that understood source code
written in English. Since CodeWarrior doesn’t
understand English, but does understand C, let’s look
at a C program that does the same thing:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int index, num, sum;

 sum = 0;

 for (index=1; index<=5; index++)
 {
 printf(“Enter number %d --->”, index);
 scanf(“%d”, &num);
 sum = sum + num;
 }

 printf(“The sum of these numbers is %d.”,
sum);

 return 0;
}

If this program doesn’t mean anything to you, don’t
panic. Just keep reading. By the time you finish
reading this book, you’ll be writing C code like a pro.

Compiling Your Source Code
Once your source code is written, your next job is
to hand it off to a compiler. The compiler translates
your C source code into instructions that make sense
to your computer. These instructions are known as
machine language or object code. Source code is
for you, machine language/object code is for your
computer. You write the source code using an editor,
then the compiler translates your source code into
machine readable form.

23

Chapter 3:
Programming
Basics

Don’t let the terminology bog you down. And that’s
an order! Read the rest of this chapter, just to get a
basic idea of the programming process, then move on
to Chapter 4. I’ll lay everything out for you, step-by-
step, so you won’t get lost.

Xcode collects everything needed to build your
project into a project file. Figure 3-3 shows a project
I built to run the source code above. Again, don’t
worry about all the details. There’s a lot here to
absorb. For now, think of the project file as a file
folder filled up with all your important papers. But
instead of papers, the project file is a collection of
all the files that come together to make your project
work.

Figure 3.3 An Xcode project window, showing some source
code.

Think of the process of running your program as a
three stage process. First, Xcode compiles all your
source code into object code. Next, all the object
code in your project is linked together by a program
called a linker to form your application. That linked
application is what actually runs on your computer.

24

Chapter 3:
Programming
Basics

int main()
{
 return 0;
}

main.c

int extras()
{
 return 0;
}

extras.c

0100111001010
0101001110100
1010010010010
1100100111010
0101001001001
0110010011101

lib.o

0100111001010
0101001110100
1010010010010
1100100111010
0101001001001
0110010011101

main.o

0100111001010
0101001110100
1010010010010
1100100111010
0101001001001
0110010011101

extras.o

0100111001010
0101001110100
1010010010010
1100100111010
0101001001001
0110010011101

lib.o

compiler

compiler

main.o

extras.o

0100111001010
0101001110100
1010010010010
1100100111010
0101001001001
0110010011101

lib.o

linker

0100111001010
0101001110100
1010010010010
1100100111010
0101001001001
0110010011101

0100111001010
0101001110100
1010010010010
1100100111010
0101001001001
0110010011101

Linked
Application

Figure 3.4 Building your application. First, your source
code is compiled, then your object code is linked. The
linked application is ready to run.

Take a look at Figure 3-4. This project contains two
source code files, one named main.c and another
named extras.c, as well as an object file named lib.
o. Sometimes, you’ll find yourself making use of

25

Chapter 3:
Programming
Basics

some code that someone already compiled. Perhaps
they want to share their code, but do not want to
show you their source code. Or, perhaps, you built
a library of code that you’ll use again and again and
don’t want to recompile each time you use the code.
By precompiling the file into object code and adding
the object code into your project, you can save some
time.

As you can see in Figure 3-4, Xcode starts by
compiling main.c and extras.c into object code. Next,
all three object files are linked together by the linker
into a runnable application. Once this is done, Xcode
can run your application for you.

What’s Next
At this point, don’t worry too much about the details.
The basic concept to remember from this chapter is
that your C programs will start life as source code,
then get converted to object code by the compiler.
Finally, all the object code gets linked together to
form your runnable application.

Ready to get into some source code? Get out your
programming gloves - we’re about to go to code!

E
Chapter 4 C Basics: Functions

26

very programming language is designed to follow
strict rules that define the language’s source code
structure. The C programming language is no
different. These next few chapters will explore the
syntax of C.

Chapter 3 discussed some fundamental
programming topics, including the process of
translating source code into machine code through a
tool called the compiler. This chapter focuses on one
of the primary building blocks of C programming,
the function.

C Functions
C programs are made up of functions. A function is
a chunk of source code that accomplishes a specific
task. You might write a function that adds together a
list of numbers, or one that calculates the radius of a
given circle. Here’s an example:

int SayHello(void)
{
 printf(“Hello!!!\n”);
}

This function, called SayHello(), prints a message
in a special scrolling text window known as the
run window. On some systems, this window is also
known as the console window or just plain console.
Though technically Xcode treats the run window and
console as two separate things, we’ll use both terms
to refer to the output window used by our programs.

27

Chapter 4:
C Basics:
Functions

Throughout this book, we’ll refer to a function by
placing a pair of parentheses after its name. This
will help distinguish between variable names and
function names. For example, the name doTask
refers to a variable (variables are covered in Chapter
5), while doTask() refers to a function.

The Function Definition
Functions start off with a function specifier, in this
case:

int SayHello(void)

A function specifier consists of a return type, the
function name, and a pair of parentheses wrapped
around a parameter list. We’ll talk about the return
type and parameter list later. For now, the important
thing is to be able to recognize a function specifier
and be able to pick out the function’s name from
within the specifier.

Following the specifier comes the body of the
function. The body is always placed between a pair of
curly braces: “{” and “}”. These braces are known in
programming circles as “left-curly” and “right-curly”.
Here’s the body of SayHello():

{
 printf(“Hello!!!\n”);
}

The body of a function consists of a series of one or
more statements, each followed by a semicolon “;”.
If you think of a computer program as a detailed set
of instructions for your computer, a statement is one
specific instruction. The printf() featured in the
body of SayHello() is a statement. It instructs
the computer to display some text in the console
window.

As you make your way through this book, you’ll learn
C’s rules for creating efficient, compilable statements.

Creating efficient statements will make your
programs run faster with less chance of error. The
more you learn about programming (and the more
time you spend at your craft) the more efficient you’ll
make your code.

Syntax Errors and Algorithms
When you ask the compiler to compile your source
code, the compiler does its best to translate your
source code into object code. Every so often, the
compiler will hit a line of source code that it just
doesn’t understand. When this happens, the compiler
reports the problem to you. It does not complete
the compile. The compiler will not let you run your
program until every line of source code compiles.

As you learn C, you’ll find yourself making two types
of mistakes. The simplest type, called a syntax error,
prevents the program from compiling. The syntax
of a language is the set of rules that determines what
will and will not be read by the compiler. Many

28

Chapter 4:
C Basics:
Functions

syntax errors are the result of a mistyped letter, or
typo. Another common syntax error occurs when
you forget the semicolon at the end of a statement.

Syntax errors are usually fairly easy to fix. If the
compiler doesn’t tell you exactly what you need to fix,
it will usually tell you where in your code the syntax
error occurred and give you enough information to
spot and repair the error.

The second type of mistake is a flaw in your
program’s algorithm. An algorithm is the approach
used to solve a problem. You use algorithms all the
time. For example, here’s an algorithm for sorting
your mail:

1) Start by taking the mail out of the mailbox.
2) If there’s no mail, you’re done! Go watch TV.
3) Take a piece of mail out of the pile.
4) If it’s junk mail, throw it away, then go back to

step 2.
5) If it’s a bill, put it with the other bills, then go

back to step 2.
6) If it’s not a bill and not junk mail, read it, then go

back to step 2.

This algorithm completely describes the process of
sorting through your mail. Notice that the algorithm
works, even if you didn’t get any mail. Notice also
that the algorithm always ends up at step 2, with the
TV on.

Figure 4. shows a pictorial representation of the
mail-sorting algorithm, commonly known as a flow
chart. Much as you might use an outline to prepare
for writing an essay or term paper, you might use a
flow chart to flesh out a program’s algorithm before
you actually start writing the program. Here’s how
this works.

This flow chart uses two types of boxes. The
rectangular box portrays an action, such as taking
mail out of the mailbox or recycling the junk mail.
Once you’ve taken the action, follow the arrow
leading out of the rectangle to go on to the next step
in the sequence.

Each diamond-shaped box poses a yes/no question.
Unlike their rectangular counterparts, diamond
shaped boxes have two arrows leading out of them.
One shows the path to take if the answer to the
question inside the box is yes, the other shows the
path to take if the answer is no. Follow the flow chart
through, comparing it to the algorithm described
above.

In the C world, a well-designed algorithm results
in a well-behaved program. On the other hand, a
poorly designed algorithm can lead to unpredictable
results. Suppose, for example, you wanted to write a
program that added three numbers together, printing
the sum at the end. If you accidentally printed one of
the numbers instead of the sum of the numbers, your
program would still compile and run. The result of
the program would be in error, however (you printed

29

Chapter 4:
C Basics:
Functions

one of the numbers instead of the sum), because of a
flaw in your program’s algorithm.

The efficiency of your source code, referred to earlier,
is a direct result of good algorithm design. Keep the
concept of algorithm in mind as you work your way
through the examples in the book.

Take Mail
Out of Mailbox

All Done!
Go Watch TV.

Place Bill
on Hall Table

Recycle the
Darn Thing

Read
Mail

Look at a
Piece of Mail

Is It
Junk
Mail?

Is It
a Bill?

Any
Mail
Left?

no no

yesyes

yes no

Figure 4. The mail sorting flow chart.

30

Chapter 4:
C Basics:
Functions

Calling a Function
In Chapter 2, you ran a test program to make sure
Xcode (your programming software) was installed
properly. The test program sat in a file called main.c,
and consisted of a single function, called main(). As
a refresher, here’s the source code from main.c:

#include <stdio.h>

int main (int argc, const char * argv[]) {
 // insert code here...
 printf(“Hello, World!\n”);
 return 0;
}

As you make your way through the code in this book,
you’ll notice that most of my code follows a slightly
different style than Xcode’s sample program. I tend
to put my open curly brace (“{“) on its own line, and
I tend to sprinkle a few more spaces throughout my
code. That’s just my personal style. Adopt my style or
develop one of your own. Find a style that works for
you and be consistent!

At first blush, even this starter program can seem
intimidating, but no worries, mate. There’s really only
one line in this code that you really need to focus on
at this point in the book, and that’s this function call:

 printf(“Hello, World!\n”);

Though this program has lots of complicated looking
elements all around, at its heart is a single function
call. As far as all the other dangly bits, you can read
the tech block that follows for a sneak preview, or
just ignore them and know that we’ll get to them as
we go along.

31

Chapter 4:
C Basics:
Functions

The source code above can be broken into five basic
pieces. Here’s the first piece:

#include <stdio.h>

In C, any line that starts off with a pound sign (“#”)
is known as a compiler directive, an instruction
that asks the compiler to do something special.
This particular directive is called a #include
(pronounced “pound include”). It asks the compiler to
include code from another file on your hard drive as
if that code was in this file in the first place. As it turns
out, the file stdio.h contains all kids of goodies
that we’ll use throughout the book. Just ignore this
line for now.

Here’s the second piece:

int main (int argc, const char *
argv[]) {

}

As we discussed a bit earlier, this is the function
specifier for the function named main(). The
curly-braces (“{” and “}”) surround the body of the
function.

The third piece of this puzzle is this line:

// insert code here...

Any time the compiler encounters two slashes (“//”)
in a row, it ignores the slashes and anything else on
that line. This line of code is called a comment. Its only
purpose is to document your code and to help make
clear what’s going on at this point in the program.
Comments are a good thing.

The fourth piece is the call to the function printf(),
which we’ll focus on in a bit:

printf(“Hello, World!\n”);

The fifth and final piece of our program is this line of
code:

return 0;

A return statement in a function tells the compiler
that you are done with this function and you want to
return. In this case, you want the function to return a
value of 0.

Again, don’t get hung up on the specifics. It’ll all
become clear as you go.

So what does “calling a function” really mean?
Basically, whenever your source code calls a function,
each of the statements in the called function is
executed before the next statement of the calling
function is executed.

Confused? Look at Figure 4.2. In this example,
main() starts with a call to the function
MyFunction(). This call to MyFunction()
will cause each of the statements inside
MyFunction() to be executed. Once the last

32

Chapter 4:
C Basics:
Functions

statement in MyFunction() is executed, control
is returned to main(). Now, main() can call
AnotherFunction().

main()
{
 MyFunction();
 AnotherFunction();
}

MyFunction()
{

}

AnotherFunction()
{

}

Figure 4.2 main() calls MyFunction(), then calls
AnotherFunction().

Every C program you write will have a main()
function. Your program will start running with the
first line in main() and, unless something unusual
happens, end with the last line in main(). Along the
way main() may call other functions which may, in
turn, call other functions and so on.

ISO C and the Standard Library
The American National Standards Institute
(ANSI) established a national standard for the C
programming language. This standard became
known as ANSI C. Later, the International Standards
Organization (ISO) adopted this standard, and ANSI
C evolved into the international standard known as
ISO C. Part of this standard is a specific definition of
the syntax of the C language.

Occasionally, you’ll still hear C programmers refer to
the ANSI C standard. The main difference between
the two standards is that ISO C has extra functions
in its Standard Library to handle multibyte and wide
characters. ISO C, ANSI C, either term is fine. The
important thing is to be aware that a strict C standard
does exist.

As we stated earlier, the syntax of a language gives
programmers a set of rules that rigidly defines the
format of their source code. For example, ISO C tells
you when you can and can’t use a semicolon. ISO C
tells you to use a pair of curly braces to surround the
body of each function. You get the idea. The greatest
benefit to having an international standard for C is
portability. With a minimum of tinkering, you can
get an ISO C program written on one computer up
and running on another computer. When you finish
with this book, you’ll be able to program in C on any
computer that has an ISO C compiler.

Another part of the ISO C standard is the Standard

33

Chapter 4:
C Basics:
Functions

Library. The Standard Library is a set of functions
available to every ISO C programmer. As you may
have guessed, the printf() function you’ve seen
in our sample source code is part of the Standard
Library.

There are tons of great functions in the Standard
Library. You’ll learn some of the more popular ones
as we make our way through the book. Once you
get comfortable with the Standard Library functions
presented here, dig through some of the Standard
Library documentation that you’ll find on the web,
just to get a sense of what else is in there.

There are a number of great sites that discuss the
Standard Library. One of my favorite resources on the
net is Wikipedia (http://www.wikipedia.org), an
open-content, collaborative encyclopedia. If you’ve
never played with Wikipedia, here’s an excellent link
to get you started:

http://en.wikipedia.org/wiki/ANSI_C_
standard_library

Yeah, it’s a bit techie, but an invaluable reference
resource once you start developing your own code, or
if you encounter a function in this book and want to
know more.

Another great page (also referenced at the bottom of
the Wikipedia page) is the detailed C Standard Library
reference maintained by our friends at the University
of Tasmania:

http://www.infosys.utas.edu.au/info/
documentation/C/CStdLib.html

Enjoy!

http://www.wikipedia.org
http://en.wikipedia.org/wiki/ANSI_C_standard_library
http://en.wikipedia.org/wiki/ANSI_C_standard_library
http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html
http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html

34

Chapter 4:
C Basics:
Functions

Same Program, Two Functions
As you start writing your own programs, you’ll
find yourself designing many individual functions.
You might need a function that puts a form up on
the screen for the user to fill out. You might need
a function that takes a list of numbers as input,
providing the average of those numbers in return.
Whatever your needs, you will definitely be creating
a lot of functions. Let’s see how it’s done.

Our first program contained a function named
main() that passed the text string “Hello,
world!\n” to printf(). Our next program,
hello2, captures that functionality in a new
function, called SayHello().

You’ve probably been wondering why the characters
“\n” keep appearing at the end of all our text strings.
Don’t worry, there’s nothing wrong with your copy
of the book. The “\n” is perfectly normal. It tells
printf() to move the cursor to the beginning of
the next line in the text window, sort of like hitting
the return key in a text editor.

The sequence “\n” is frequently referred to as
a newline character, a carriage return, or just
plain return. By including a return at the end of a
printf(), we know that the next line we print will
appear at the beginning of the next line in the text
window.

Opening hello2.xcode
In the Finder, open the Learn C Projects folder,
open the subfolder named 04.01 - hello2 and
double-click on the project file hello2.xcode. A
project window with the title hello2 will appear, as
shown in Figure 4.3.

Figure 4.3 The hello2 project window.

Notice the left column, labeled Groups & Files. This
is also known as the Groups & Files pane or the smart
groups pane, a pane being a sub-area of a window.
In Figure 4.3, the Implementation Files group is
selected, and the main area of the project window
lists the files in this group. In this case, main.c is
the only source code file in this project. Later in the
book, we’ll see projects with multiple source code
files. They’ll all be listed in the Implementation Files
group.

35

Chapter 4:
C Basics:
Functions

If you double-click on the name main.c in the main
area, a new source code editing window will appear,
allowing you to edit your source code. Alternatively,
you can edit your source code right inside your
project window by clicking on the Show/Hide Editor
icon in the row of icons at the top of the project
window. The icon is just to the right of the stop sign
icon and looks like a miniature version of the project
window. When you first click the editor, a source
code editing pane appears in the project window (see
Figure 4.4).

Figure 4.4 Click on the Show/Hide Editor icon at the top
of the window to open a source code editing pane in the
project window.

Here’s the source code from main.c:

#include <stdio.h>

void SayHello(void);

int main (int argc, const char * argv[])
{
 SayHello();

return 0;
}

void SayHello(void)
{
 printf(“Hello, world!\n”);
}

Let’s walk through this, line-by-line. hello2 starts
off with this line of source code:

#include <stdio.h>

You’ll find this line (or a slight variation) at the
beginning of each one of the programs in this book.
It tells the compiler to include the source code
from the file stdio.h as it compiles main.c. stdio.h
contains information we’ll need if we are going to
call printf() in this source code file. You’ll see the
#include mechanism used throughout this book.

36

Chapter 4:
C Basics:
Functions

We’ll talk about it in detail later in the book. For now,
get used to seeing this line of code at the top of each
of our source code files.

The line following the #include is blank. This is
completely cool. Since the C compiler ignores all
blank lines, you can use them to make your code a
little more readable. I like to leave a few blank lines
(at least) between each of my functions.

This line of code appears next:

void SayHello(void);

While this line might look like a function specifier,
don’t be fooled! If this were a function specifier, it
would not end with a semi-colon and it would be
followed by a left-curly-brace (“{“) and the rest of the
function. This line is known as a function prototype
or function declaration. You’ll include a function
prototype for every function, other than main(), in
your source code file.

To understand why, it helps to know that a compiler
reads your source code file from the beginning to
the end, a line at a time. By placing a complete list
of function prototypes at the beginning of the file,
you give the compiler a preview of the functions it is
about to compile. The compiler uses this information
to make sure that calls to these functions are made
correctly.

This will make a lot more sense to you once we get
into the subject of parameters later on. For now, get
used to seeing function prototypes at the beginning
of all your source code files.

Next comes the function main(). main() first
calls the function SayHello():

int main (int argc, const char * argv[])
{
 SayHello();

At this point, the lines of the function SayHello()
get run. When SayHello() is finished, main()
can move on to its next line of code. The keyword
return tells the compiler to return from the current
function, without executing the remainder of the
function. We’ll talk about return later on. Until
then, the only place you’ll see this line is at the end of
main().

return 0;
}

Following main() is another pair of blank
lines, followed by the function SayHello().
SayHello() prints the string “Hello, world!”,
followed by a return, in a window, then returns
control to main().

37

Chapter 4:
C Basics:
Functions

void SayHello(void)
{
 printf(“Hello, world!\n”);
}

Let’s step back for a second and compare our first
program to hello2. In our first program, main()
called printf() directly. In hello2, main()
calls a function which then calls printf(). This
extra layer demonstrates a basic C programming
technique, taking code from one function and using
it to create a new function. This example took this
line of code:

printf(“Hello, world!\n”);

and used it to create a new function called
SayHello(). This function is now available for use
by the rest of the program. Every time we call the
function SayHello(), it’s as if we executed the line
of code:

printf(“Hello, world!\n”);

SayHello() may be a simple function, but it
demonstrates an important concept. Wrapping a
chunk of code in a single function is a powerful
technique. Suppose you create an extremely complex

function, say, 00 lines of code in length. Now,
suppose you call this function in five different places
in your program. With 00 lines of code, plus the five
function calls, you are essentially achieving 500 lines’
worth of functionality. That’s a pretty good return on
your investment!

Let’s watch hello2 in action.

Running hello2
Select Build and Run from the Project menu. You’ll
see a window similar to the one shown in Figure 4.5.
Gee, this looks just like the output from Chapter 2’s
test program. Of course, that was the point. Even
though we embedded our printf() inside the
function SayHello(), hello2 produced the same
results.

Figure 4.5 The output from hello2.

38

Chapter 4:
C Basics:
Functions

Before we move on to our next program, let’s
revisit a little terminology we first touched on at
the beginning of the chapter. The window that
appeared when we ran hello2 is referred to as
the run window and, less formally, as the console
window or just plain console. There are a number
of Standard Library functions designed to send text
to the console window. The text that appears in the
console window is known as output. After you run
a program, you’re likely to check the output that
appears in the console to make sure your program
ran correctly.

Text based programming is fine and good, but
eventually, you’ll want to expand your horizons and
learn how to add graphical elements like buttons,
scrollbars, windows, and menus to your programs.
Have patience, stick with the program, and you’ll get
there. Start with Learn C. Once you feel comfortable
with C, move on to Mark Dalrymple’s excellent Learn
Objective C, which will teach you how to add object
programming to your C code. Once you have a handle
on Objective C, you’ll be ready to add Cocoa to the
mix. Learn C to learn the basics of programming, add
objects to the mix with Objective C, then bring the
Mac-specific user interface widgets to life with Cocoa.

Again, have patience, stick with the program, and
be sure to send me pictures of you, on the beach in
Hawaii, celebrating the release of your brand new,
best selling application!

Another Example
Imagine what would happen if you changed
hello2’s version of main() so that it read:

int main (int argc, const char * argv[])
{
 SayHello();
 SayHello();
 SayHello();

 return 0;
}

What’s different? In this version, we’ve added two
more calls to SayHello(). Can you picture what
the console will look like after we run this new
version?

To find out, close the hello2 project window,
then select Open… from Xcode’s File menu. Note
that as soon as you close the project window, Xcode
will close all the other project-related windows
automatically.

When Xcode prompts you to open a project,
navigate into the Learn C Projects folder, then into
the 04.02 – hello3 subdirectory and open the hello3.
xcode project file.

When you run hello3, the run window shown
in Figure 4.6 will appear. Take a look at the
output. Does it make sense to you? Each call to
SayHello() generates the text “Hello, world!”

39

Chapter 4:
C Basics:
Functions

followed by a carriage return.

Figure 4.6 The output from hello3.

Generating Some Errors
Before we move on to the next chapter, let’s see
how the compiler responds to errors in our source
code. In the hello3 project window, use your
favorite method to edit the main.c source code file.
Remember, you can click the Show Editor icon to edit
the source file in the project window itself, or you
can locate main.c in the Implementation Files group
and double-click the name to open a new main.c
editing window. Either method is fine.

In the source code window, find the line of source
code containing the function specifier for main().
The line should read:

int main (int argc, const char * argv[])

Click at the end of the line, so the blinking cursor
appears at the right end of the line. Now type a
semicolon, so that the line now reads:

int main (int argc, const char * argv[]);

Here’s the entire file, showing the tiny change you
just made:

#include <stdio.h>

void SayHello(void);

40

Chapter 4:
C Basics:
Functions

int main (int argc, const char * argv[]);
{
 SayHello();
 SayHello();
 SayHello();

 return 0;
}

void SayHello(void)
{
 printf(“Hello, world!\n”);
}

Keep in mind that you only added a single semi-
colon to the source code and select Build and Run
from the Build menu. Xcode knows that you changed
your source code since the last time it was compiled
and it will try to recompile main.c. Figure 4.7 shows
the error window that appears, telling you that you’ve
got a problem with your source code. Yikes! All that,
just because you added a measly semicolon!

Sometimes, the compiler will give you a perfectly
precise message that exactly describes the error it
encountered. In this case, however, the compiler got
so confused by the extra semicolon, it reported 6
errors instead of just one. Notice, however, that the
very first error message gives you a pretty good idea
of what is going on. It complains about a parse error
before the “{” token. The compiler is reading your
source code, making its way down main.c, when
it encounters what it thinks is a function specifier.

But then, just when it expects an open curly brace,
it finds a semicolon. Hrm. That’s not right. Better
report an error.

In the build window, if you double-click on the
first error line (the line that says “error: parse error
before { token”), Xcode will take you to the offending
line in the main.c editing window. In general,
when you encounter an error compiling your code,
you’ll double-click on the error message, figure
out what’s wrong, fix it, then move on to the next
error. Sometimes, I fix one error and immediately
recompile, just on the off-chance that this one error
actually was the cause of all the other error message,
as is the case with our errant semicolon.

Figure 4.7 What? All these errors just from adding a
simple semicolon? Yup.

Go back to your main.c editing window, delete the

41

Chapter 4:
C Basics:
Functions

extra semicolon, then select Build and Run from the
Build menu. Xcode will recompile your code and
rerun the program, proving that you have indeed
fixed the error. Good.

C is Case Sensitive
There are many different types of errors possible in
C programming. One of the most common results
from the fact that C is a case-sensitive language. In
a case-sensitive language, there is a big difference
between lower- and upper-case letters. This means
you can’t refer to printf() as Printf() or even
PRINTF(). Figure 4.8 shows the warning message
you’ll get if you change your call of printf() to
PRINTF(). Basically, this message is telling you that
Xcode couldn’t find a function named PRINTF()
and will do its best to run the program anyway,
assuming it will find the appropriate function at run-
time (when the program runs). To fix this problem,
just change PRINTF() back to printf() and
recompile.

42

Chapter 4:
C Basics:
Functions

Figure 4.8 The warning message you get when you change
printf() to PRINTF().

What’s Next?
Congratulations! You’ve made it through basic
training. You know how to open a project, how to
compile your code, and even how to create an error
message or two. You’ve learned about the most
important function: main(). You’ve also learned
about printf() and the Standard Library.

Now you’re ready to dig into the stuff that gives a C
program life: variables and operators.

43

Chapter 4:
C Basics:
Functions

Exercises

Open the project hello2.xcode, edit hello2.c as
described in each exercise, and describe the error
that results:

) Change the line:

 SayHello();

to say:

 SayHello(;

2) Change things back. Now change the line:

int main (int argc, const char * argv[])

to say:

int MAIN (int argc, const char * argv[])

3) Change things back. Now delete the “{” after the
line:

int main (int argc, const char * argv[])

4) Change things back. Now delete the semicolon at
the end of this line:

 printf(“Hello, world!\n”);

so it reads:

 printf(“Hello, world!\n”)

A
Chapter 5 C Basics: Variables and Operators

44

t this point, you should feel pretty comfortable using
Xcode. You should know how to open a project
and how to edit a project’s source code. You should
also feel comfortable running a project and (heaven
forbid) fixing any syntax errors that may have
occurred along the way.

On the programming side, you should recognize
a function when you see one. When you think of
a function you should first think of main(), the
most important function. You should remember that
functions are made up of statements, each of which
is followed by a semicolon.

With these things in mind, we’re ready to explore
the foundation of C programming: variables and
operators. Variables and operators are the building
blocks you’ll use to construct your program’s
statements.

An Introduction to Variables
A large part of the programming process involves
working with data. You might need to add together
a column of numbers or sort a list of names
alphabetically. The tricky part of this process is
representing your data in a program. This is where
variables come in.

Variables can be thought of as containers for your
program’s data. Imagine a table with three containers
sitting on it. Each container is labeled. One container
is labeled cup1, one labeled cup2, and the third
cup3. Now imagine you have three pieces of paper.
Write a number on each piece of paper and place one
piece inside each of the three containers. Figure 5.
shows a picture of what this might look like.

45

Chapter 5:
C Basics:
Variables and
Operators

2 3 6
cup1 cup2 cup3

Figure 5. Three cups, each with its own value.

Now imagine asking a friend to reach into the three
cups, pull out the number in each one, and add
the three values together. You can ask your friend
to place the sum of the three values in a fourth
container created just for this purpose. The fourth
container is labeled sum and can be seen in Figure
5.2.

sum

Figure 5.2 A fourth container, containing the sum of the
other three containers.

This is exactly how variables work. Variables are
containers for your program’s data. You create a
variable and place a value in it. You then ask the
computer to do something with the value in your
variable. You can ask the computer to add three

variables together, placing the result in a fourth
variable. You can even ask the computer to take the
value in a variable, multiply it by 2, and place the
result back into the original variable.

Getting back to our example, now imagine that you
changed the values in cup1, cup2, and cup3. Once
again, you could call on your friend to add the three
values, updating the value in the container sum.
You’ve reused the same variables, using the same
formula, to achieve a different result. Here’s the C
version of this formula:

sum = cup1 + cup2 + cup3;

Every time you execute this line of source code, you
place the sum of the variables cup1, cup2, and
cup3 into the variable named sum. At this point,
it’s not important to understand exactly how this
line of C source code works. What is important is
to understand the basic idea behind variables. Each
variable in your program is like a container with a
value in it. This chapter will teach you how to create
your own variables and how to place a value in a
variable.

Working With Variables
Variables come in a variety of flavors, called types. A
variable’s type determines the type of data that can
be stored in that variable. You determine a variable’s
type when you create the variable. (We’ll discuss

46

Chapter 5:
C Basics:
Variables and
Operators

creating variables in just a second.) Some variable
types are useful for working with numbers. Other
variable types are designed to work with text. In this
chapter, we’ll work strictly with variables of one type,
a numerical type called int (eventually, we’ll get into
other variable types). A variable of type int can hold
a numerical value, such as 27 or -589.

Working with variables is a two-stage process. First
you create a variable, then you use the variable. In
C, you create a variable by declaring it. Declaring
a variable tells the compiler, “Create a variable for
me. I need a container to place a piece of data in.”
When you declare a variable, you have to specify
the variable’s type as well as its name. In our earlier
example, we created four containers. Each container
had a label. In the C world, this would be the same as
creating four variables with the names cup1, cup2,
cup3, and sum. In C, if we want to use the value
stored in a variable, we use the variable’s name. We’ll
show you how to do this later in the chapter.

Here’s an example of a variable declaration:

int myVariable;

This declaration tells the compiler to create a variable
of type int (remember, ints are useful for working
with numbers) with the name myVariable. The
type of the variable (in this case, int) is extremely
important. As you’ll see, variable type determines the

type and range of values a variable can be assigned.

Variable Names
Here are a few rules to follow when you create your
own variable names:

4 Variable names must always start with an upper or
lower-case letter (A, B, ..., Z or a, b, ..., z) or with an
underscore (“_”).

4 The remainder of the variable name must be
made up of upper or lower-case letters, numbers
(0, , ..., 9), or the underscore.

These two rules yield variable names like
myVariable, THIS_NUMBER, VaRiAbLe_1, and
A1234_4321. Note that a C variable may never
include a space, or a character like “&” or “*”. These
two rules must be followed.

On the other hand, these rules do leave a fair amount
of room for inventiveness. Over the years, different
groups of programmers came up with additional
guidelines (also known as conventions) that made
variable names more consistent and a bit easier to
read.

As an example of this, Unix programmers tended
to use all lower case letters in their variable names.
When a variable name consisted of more than one
word, the words were separated by an underscore.

47

Chapter 5:
C Basics:
Variables and
Operators

This yielded variable names like my_variable or
number_of_puppies.

Another popular convention stems from a
programming language named SmallTalk. Instead
of limiting all variable names to lower case and
separating words with an underscore (“_”),
SmallTalk used a convention known as InterCap,
where all the words in a variable or function name
are stuck together. Rather than include a special,
separating character, each new word added to the
first word starts with a capital letter. For example,
instead of number_of_puppies, you’d use
numberOfPuppies. Instead of my_variable,
you’d use myVariable. Function names follow the
same convention, but start with a capital letter, giving
us function names such as SmellTheFlowers()
or HowMuchChangeYouGot().

Which convention should you use? For now, we’ll
follow the InterCap SmallTalk convention described
in the previous paragraph. But as you make your way
through the programming universe, you’ll encounter
different naming conventions that vary with each
programming environment you encounter.

As mentioned in Chapter 4, C is a case-sensitive
language. The compiler will cough out an error if you
sometimes refer to myVariable and other times
refer to myvariable. Adopt a variable naming
convention and stick with it - Be consistent!

The Size of a Type
When you declare a variable, the compiler reserves
a section of memory for the exclusive use of that
variable. When you assign a value to a variable,
you are actually modifying the variable’s dedicated
memory to reflect that value. The number of
bytes assigned to a variable is determined by the
variable’s type. You should check your compiler’s
documentation to see how many bytes go along with
each of the standard C types.

Some Macintosh compilers assign 2 bytes to each
int. Others assign 4 bytes to each int. By default,
Xcode uses 4 byte ints.

It’s important to understand that the size of a type
can change, depending on factors such as your
computer’s processor type, operating system (Mac OS
X vs. Windows, for example), and your development
environment. Remember, read the documentation
that comes with your compiler.

Let’s continue with the assumption that Xcode is
using 4 byte ints. The variable declaration:

int myInt;

reserves memory (in our case, 4 bytes) for the
exclusive use of the variable myInt. If you later
assign a value to myInt, that value is stored in the
4 bytes allocated for myInt. If you ever refer to

48

Chapter 5:
C Basics:
Variables and
Operators

myInt’s value, you’ll be referring to the value stored
in myInt’s 4 bytes.

If your compiler used 2 byte ints, the preceding
declaration would allocate 2 bytes of memory for the
exclusive use of myInt. As you’ll see, it is important
to know the size of the types you are dealing with.

Why is the size of a type important? The size of a
type determines the range of values that type can
handle. As you might expect, a type that’s 4 bytes
in size can hold a wider range of values than a type
that’s only byte in size. Here’s how all this works...

Bytes and Bits
Each byte of computer memory is made up of 8 bits.
Each bit has a value of either or 0. Figure 5.3 shows
a byte holding the value 0000. The value 0000
is said to be the binary representation of the value of
the byte. Look closer at Figure 5.3. Notice that each
bit is numbered (the bit numbers are above each bit
in the figure), with bit 0 on the extreme right side
to bit 7 on the extreme left. This is a standard bit-
numbering scheme used in most computers.

0
Bit 7

Add 128

0
Bit 6

Add 64

1
Bit 5

Add 32

0
Bit 4

Add 16

1
Bit 3

Add 8

0
Bit 2

Add 4

1
Bit 1

Add 2

1
Bit 0

Add 1

Figure 5.3 A byte holding the binary value 0000.

Notice also the labels that appear beneath each bit
in the figure (“Add ”, “Add 2”, etc.). These labels are
the key to binary numbers. Memorize them. (It’s
easy — each bit is worth twice the value of its right
neighbor.) These labels are used to calculate the value
of the entire byte. Here’s how it works:

4 Start with a value of 0.
4 For each bit with a value of , add the label value

below the bit.

That’s all there is to it! In the byte pictured in Figure
5.3, you’d calculate the byte’s value by adding + 2
+ 8 + 32 = 43. Where did we get the , 2, 8, and 32?
They’re the bottom labels of the only bits with a value
of . Try another one.

0
Bit 7

Add 128

1
Bit 6

Add 64

0
Bit 5

Add 32

1
Bit 4

Add 16

1
Bit 3

Add 8

0
Bit 2

Add 4

1
Bit 1

Add 2

0
Bit 0

Add 1

Figure 5.4 What’s the value of this byte?

What’s the value of the byte pictured in Figure 5.4?
Easy, right? 2 + 8 + 6 + 64 = 90. Right! How about
the byte in Figure 5.5?

49

Chapter 5:
C Basics:
Variables and
Operators

1
Bit 7

Add 128

1
Bit 6

Add 64

1
Bit 5

Add 32

1
Bit 4

Add 16

1
Bit 3

Add 8

1
Bit 2

Add 4

1
Bit 1

Add 2

1
Bit 0

Add 1

Figure 5.5 Last one: What’s the value of this byte?

This is an interesting one: + 2 + 4 + 8 + 6 + 32 + 64
+ 28 = 255. This example demonstrates the largest
value that can fit in a single byte. Why? Because
every bit is turned on. We’ve added everything we
can add to the value of the byte.

The smallest value a byte can have is 0 (00000000).
Since a byte can range in value from 0 to 255, a byte
can have 256 possible values.

Actually, this is just one of several ways to represent
a number using binary. This approach is fine if you
want to represent integers that are always greater
than or equal to 0 (known as unsigned integers).
Computers use a different technique, known as two’s
complement notation, when they want to represent
integers that might be either negative or positive.

To represent a negative number using two’s
complement notation:

4 Start with the binary representation of the
positive version of the number

4 Complement all the bits (turn the 1s into 0s and
the 0s into 1s)

4 Add 1 to the result.

For example, the binary notation for the number 9
is 00001001. To represent -9 in two’s complement
notation, flip the bits (11110110) then add 1. The two’s
complement for -9 is 11110110 + 1 = 11110111.

The binary notation for the number 2 is 00000010.
The two’s complement for -2 would be 11111101 + 1
= 11111110. Notice that in binary addition, when you
add 01 + 01 you get 10. Just as in regular addition, you
carry the 1 to the next column.

Don’t worry about the details of binary
representation and arithmetic. What’s important to
remember is that the computer uses one notation
for positive-only numbers and a different notation
for numbers that can be positive or negative. Both
notations allow a byte to take on one of 256 different

50

Chapter 5:
C Basics:
Variables and
Operators

values. The positives-only scheme allows values
ranging from 0 to 255. The two’s complement scheme
allows a byte to take on values ranging from -28 to
27. Note that both of these ranges contain exactly
256 values.

Going From 1 to 2 Bytes
So far, we’ve discovered that byte (8 bits) of
memory can hold one of 28 = 256 possible values.
By extension, 2 bytes (6 bits) of memory can hold
one of 26 = 65,536 possible values. If the 2 bytes are
unsigned (never allowed to hold a negative value)
they can hold values ranging from 0 to 65,535. If the
2 bytes are signed (allowed to hold both positive and
negative values) they can hold values ranging from
-32,768 to 32,767.

A 4 byte int can hold 232 = 4,294,967,296 possible
values. Wow! An unsigned 4 byte int can hold
values ranging from –2,47,483,648 to 2,47,483,647,
while a signed 4 byte int can hold values from 0 to
4,294,967,295.

To declare a variable as unsigned, precede its
declaration with the unsigned qualifier. Here’s an
example:

unsigned int myInt;

Now that you’ve defined the type of variable your
program will use (in this case, int), you can assign a
value to your variable.

Operators
One way to assign a value to a variable is with the =
operator, also known as the assignment operator. An
operator is a special character (or set of characters)
that represents a specific computer operation. The
assignment operator tells the computer to compute
the value of the right side of the = and assign that
value to the left side of the =. Take a look at this line
of source code:

myInt = 237;

This statement causes the value 237 to be placed in
the memory allocated for myInt. In this line of code,
myInt is known as an l-value (stands for left-value),
because it appears on the left side of the = operator.
A variable makes a fine l-value. A number (like 237)
makes a terrible l-value. Why? Because values are
copied from the right side to the left side of the =
operator. In this line of code:

237 = myInt;

you are asking the compiler to copy the value in
myInt to the number 237. Since you can’t change
the value of a number, the compiler will report an
error when it encounters this line of code (most
likely, the error message will say something about an
“invalid lvalue” – go ahead, try this yourself).

51

Chapter 5:
C Basics:
Variables and
Operators

As we just illustrated, you can use numerical
constants (such as 237) directly in your code. In
the programming world, these constants are called
literals. Just as there are different types of variables,
there are also different types of literals. You’ll see
more on this topic later in the book.

Look at this example:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int myInt, anotherInt;

 myInt = 503;
 anotherInt = myInt;

 return 0;
}

Notice we’ve declared two variables in this program.
One way to declare multiple variables is the way we
did here, separating the variables by a comma (“,”).
There’s no limit to the number of variables you can
declare using this method.

We could have declared these variables using two
separate declaration lines:

int myInt;
int anotherInt;

Either way is fine. As you’ll see, C is an extremely
flexible language. Let’s look at some other operators.

The +, -, ++, and -- Operators
The + and - operators each take two values and
reduce them to a single value. For example, the
statement:

myInt = 5 + 3;

will first resolve the right side of the = by adding
the numbers 5 and 3 together. Once that’s done, the
resulting value (8) is assigned to the variable on the
left side of the =. This statement assigns the value 8
to the variable myInt. Assigning a value to a variable
means copying the value into the memory allocated
to that variable.

Here’s another example:

myInt = 10;
anotherInt = 12 - myInt;

The first statement assigns the value 0 to myInt.
The second statement subtracts 0 from 2 to get 2,
then assigns the value 2 to anotherInt.

The ++ and -- operators operate on a single value
only. ++ increments (raises) the value by and --
decrements (lowers) the value by . Take a look:

52

Chapter 5:
C Basics:
Variables and
Operators

myInt = 10;
myInt++;

The first statement assigns myInt a value of 0. The
second statement changes myInt’s value from 0 to
. Here’s a -- example:

myInt = 10;
--myInt;

This time the second line of code left myInt with
a value of 9. You may have noticed that the first
example showed the ++ following myInt, while the
second example showed the -- preceding myInt.

The position of the ++ and -- operators determines
when their operation is performed in relation to
the rest of the statement. Placing the operator on
the right side of a variable or expression (postfix
notation) tells the compiler to resolve all values
before performing the increment (or decrement)
operation. Placing the operator on the left side of
the variable (prefix notation) tells the compiler
to increment (or decrement) first, then continue
evaluation. Confused? The following examples
should make this point clear:

myInt = 10;
anotherInt = myInt--;

The first statement assigns myInt a value of 0. In
the second statement, the -- operator is on myInt’s
right side. This use of postfix notation tells the
compiler to assign myInt’s value to anotherInt
before decrementing myInt. This example leaves
myInt with a value of 9 and anotherInt with a
value of 0.

Here’s the same example, written using prefix
notation:

myInt = 10;
anotherInt = --myInt;

This time, the -- is on the left side of myInt. In
this case, the value of myInt is decremented before
being assigned to anotherInt. The result? myInt
and anotherInt are both left with a value of 9.

This use of prefix and postfix notation shows both
a strength and a weakness of the C language. On
the plus side, C allows you to accomplish a lot in a
small amount of code. In the previous examples,
we changed the value of two different variables in a
single statement. C is powerful.

On the down side, C code written in this fashion can
be extremely cryptic, difficult to read for even the
most seasoned C programmer.

Write your code carefully.

53

Chapter 5:
C Basics:
Variables and
Operators

The += and -= Operators
In C, you can place the same variable on both the
left and right sides of an assignment statement. For
example, the statement:

myInt = myInt + 10;

increases the value of myInt by 0. The same results
can be achieved using the += operator:

myInt += 10;

is the same as:

myInt = myInt + 10;

In the same way, the -= operator can be used to
decrement the value of a variable. The statement:

myInt -= 10;

decrements the value of myInt by 0.

The *, /, *=, and /= Operators
The * and / operators each take two values and
reduce them to a single value, much the same as the
+ and - operators do. The statement:

myInt = 3 * 5;

multiplies 3 and 5, leaving myInt with a value of 5.
The statement:

myInt = 5 / 2;

divides 5 by 2 and, assuming myInt is declared as
an int (or any other type designed to hold whole
numbers), assigns the integral (truncated) result
to myInt. The number 5 divided by 2 is 2.5. Since
myInt can only hold whole numbers, the value 2.5 is
truncated and the value 2 is assigned to myInt.

Math alert! Numbers like -37, 0, and 22 are known as
whole numbers or integers. Numbers like 3.14159,
2.5, and .0001 are known as fractional or floating
point numbers.

The *= and /= operators work much the same as
their += and -= counterparts. The statement:

myInt *= 10;

is identical to the statement:

myInt = myInt * 10;

54

Chapter 5:
C Basics:
Variables and
Operators

The statement:

myInt /= 10;

is identical to the statement:

myInt = myInt / 10;

The / operator doesn’t perform its truncation
automatically. The accuracy of the result is limited by
the data type of the operands. As an example, if the
division is performed using ints, the result will be an
int, and is truncated to an integer value.

There are several data types (such as float) which
support floating point division using the / operator.

Using Parentheses ()
Sometimes the expressions you create can be
evaluated in several ways. Here’s an example:

myInt = 5 + 3 * 2;

You can add 5 + 3, then multiply the result by 2
(giving you 6). Alternatively, you can multiply 3 *
2 and add 5 to the result (giving you). Which is
correct?

C has a set of built-in rules for resolving the order of
operators. As it turns out, the * operator has a higher
precedence than the + operator, so the multiplication
will be performed first, yielding a result of .

Though it helps to understand the relative
precedence of the C operators, it is hard to keep
track of them all. That’s why the C gods gave us
parentheses! Use parentheses in pairs to define the
order in which you want your operators performed.
The statement:

myInt = (5 + 3) * 2;

will leave myInt with a value of 6. The statement:

myInt = 5 + (3 * 2);

55

Chapter 5:
C Basics:
Variables and
Operators

will leave myInt with a value of . You can use more
than one set of parentheses in a statement, as long as
they occur in pairs — one left parenthesis associated
with each right parenthesis. The statement:

myInt = ((5 + 3) * 2);

will leave myInt with a value of 6.

Operator Precedence
In the previous section I referred to C’s built in
rules for resolving operator precedence. If you
have a question about which operator has a higher
precedence, look it up in the chart in Figure 5.6.
Here’s how the chart works.

OrderOperators by Precedence
Left to Right

Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right

Left to Right

Right to Left
Right to Left

Right to Left
Right to Left

->, ., ++postfix, --postfix

*pointer, &address of, +unary, -unary, !, ~, ++prefix, --prefix, sizeof

*multiply, /, %
+binary, -binary

&bitwise=and

<<left-shift, >>right-shift

Typecast

^
|
&&
||
?:

,
=, +=, -=, *=, /=, %=, >>=, <<=, &=, |=, ^=

>, >=, <, <=
==, !=

Figure 5.6 The relative precedence of C’s built-in
operators. The higher the position in the chart, the higher
the precedence.

The higher an operator is in the chart, the higher its
precedence. For example, suppose you are trying to
predict the result of this line of code:

myInt = 5 * 3 + 7;

56

Chapter 5:
C Basics:
Variables and
Operators

First, look up the operator * in the chart. Hmmm...
* seems to be in the chart twice, once with label
pointer and once with the label multiply.
You can tell just by looking at this line of code that
we want the multiply version. The compiler is
pretty smart. Just like you, it can tell that this is the
multiply version of *.

OK, now look up +. Yup - it’s in there twice also,
once as unary and once as binary. A unary + or
- is the sign that appears before a number, like +47
or -32768. In our line of code, the + operator has two
operands, so clearly binary + is the one we want.

Now that you’ve figured out which operator is which,
you can see that the multiply * is higher up on
the chart than the binary +, and thus has a higher
precedence. This means that the * will get evaluated
before the +, as if the expression were written as:

myInt = (5 * 3) + 7;

So far so good. Now what about this line of code:

myInt = 27 * 6 % 5;

Both of these operators are on the fourth line in
the chart. Which one gets evaluated first? If both
operators under consideration are on the same line
in the chart, the order of evaluation is determined

by the entry in the chart’s right-most column. In this
case, the operators are evaluated from left to right. In
the current example, % will get evaluated before *, as
if the line of code were written:

myInt = 27 * (6 % 5);

What about this line of code:

myInt = 27 % 6 * 5;

In this case, the * will get evaluated before the %, as if
the line of code were written:

myInt = 27 % (6 * 5);

Of course, you can avoid this exercise altogether
with a judicious sprinkling of parentheses. As you
look through the chart, you’ll definitely notice some
operators that you haven’t learned about yet. As you
read through the book and encounter new operators,
check back with the chart to see where it fits in.

57

Chapter 5:
C Basics:
Variables and
Operators

Sample Programs
So far in this chapter, we’ve discussed variables
(mostly of type int) and operators (mostly
mathematical). The program examples on the
following pages combine variables and operators
into useful C statements. We’ll also learn about
a powerful part of the Standard Library, the
printf() function.

Opening operator.xcode
Our next program, operator, provides a testing
ground for some of the operators covered in the
previous sections. main.c declares a variable
(myInt) and uses a series of statements to change
the value of the variable. By including a printf()
after each of these statements, main.c makes it
easy to follow the variable, step by step, as its value
changes.

In Xcode, close any project windows that may be
open. In the Finder, locate the Learn C Projects folder
and the 05.0 – operator subfolder, then double-click
the file operator.xcode. The operator project window
should appear (Figure 5.7).

Remember, you can double-click on the source code
file name to open a new editing window, or you can
click the Show/Hide Editor icon to open an editing
pane within the project window.

Figure 5.7 The operator project window.

Run operator by selecting Build and Run from
the Build menu. Xcode will first attempt to compile
main.c, then run it. Compare your output to that
shown in Figure 5.8. They should be about the same.

58

Chapter 5:
C Basics:
Variables and
Operators

Figure 5.8 The operator’s output.

Stepping Through the Source Code
Before we walk through the source code in main.
c, you might want to bring the source code up on
your screen (double-click on the name main.c in the
project window, or click on the Show/Hide Editor
icon).

main.c starts off with a #include statement that
gives us access to a bunch of Standard Library
functions, including printf():

#include <stdio.h>

main() starts out by defining an int named
myInt.

int main (int argc, const char * argv[])

{
 int myInt;

Note that earlier I used the term “declaring a variable”
and now I’m using the term “defining”. What’s the
difference? A variable declaration is any statement
that specifies a variable’s name and type. The line:

int myInt;

certainly does that. A variable definition is a
declaration that causes memory to be allocated for
the variable. Since the previous statement does cause
memory to be allocated for myInt, it does qualify
as a definition. Later in the book, you’ll see some
declarations that don’t qualify as definitions. For now,
just remember, a definition causes memory to be
allocated.

At this point in the program (after myInt has been
declared but before any value has been assigned to
it), myInt is said to be uninitialized. In computerese,
the term initialization refers to the process of
establishing a variable’s value for the first time. A
variable that has been declared, but that has not had
a value assigned to it, is said to be uninitialized. You
initialize a variable the first time you assign a value to
it.

Since myInt was declared to be of type int, and
since Xcode is currently set to use 4 byte ints, 4
bytes of memory were reserved for myInt. Since we
haven’t placed a value in those 4 bytes yet, they could

59

Chapter 5:
C Basics:
Variables and
Operators

contain any value at all. Some compilers place a value
of 0 in a newly allocated variable, but there are some
compilers that do not. The key is, don’t depend on a
variable being preset to some specific value. If you
want a variable to contain a specific value, assign the
value to the variable yourself!

Later in the book, you’ll learn about global variables.
Global variables are always set to 0 by the compiler.
All the variables used in this chapter are local
variables, not global variables. Local variables are not
guaranteed to be initialized by the compiler.

The next line of code uses the * operator to assign
a value of 6 to myInt. Following that, we use
printf() to display the value of myInt in the
console window.

 myInt = 3 * 2;
 printf(“myInt ---> %d\n”, myInt);

The code between printf()’s left and right
parentheses is known as a parameter list. The
parameters in a parameter list (also known as
arguments) are automatically provided to the
function you are calling (in this case, printf()).
The receiving function can use the parameters passed
to it to determine its next course of action. We’ll get
into the specifics of parameter passing in Chapter 7.
For the moment, let’s talk about printf() and the
parameters used by this Standard Library function.

The first parameter passed to printf() defines
what will be drawn in the console window. The
simplest call to printf() uses a quoted text string
as its only parameter. A quoted text string consists
of a pair of double-quote characters (“) with zero or
more characters between them. For example, this call
of printf():

printf(“Hello!”);

will draw the characters Hello! in the console
window. Notice that the double-quote characters are
not part of the text string.

You can request that printf() draw a variable’s
value in the midst of the quoted string. In the case of
an int, do this by embedding the two characters %d
within the first parameter and by passing the int as
a second parameter. printf() will replace the %d
with the value of the int.

In these two lines of code, we first set myInt to 6,
use printf() to print the value of myInt in the
console window.

 myInt = 3 * 2;
 printf(“myInt ---> %d\n”, myInt);

This code produces this line of output in the console
window:

60

Chapter 5:
C Basics:
Variables and
Operators

myInt ---> 6

The two characters “\n” in the first parameter
represent a carriage return and tell printf() to
move the cursor to the beginning of the next line
before it prints any more characters.

The %d is known as a format specifier. The d in
the format specifier tells printf() that you are
printing an integer variable, such as an int.

You can place any number of % specifications in
the first parameter, as long as you follow the first
parameter by the appropriate number of variables.
Here’s another example:

int var1, var2;

var1 = 5;
var2 = 10;
printf(“var1 = %d\n\nvar2 = %d\n”, var1, var2
);

will draw the text

var1 = 5

var2 = 10

in the console window. Notice the blank line between
the two lines of output. It was caused by the “\n\n”
in the first printf() parameter. The first carriage
return placed the cursor at the beginning of the next
console line (directly under the v in var1). The
second carriage return moved the cursor down one
more line, leaving a blank line in its path.

Let’s get back to our source code. The next line of
main.c increments myInt from 6 to 7, and prints the
new value in the console window.

 myInt += 1;
 printf(“myInt ---> %d\n”, myInt);

The next line decrements myInt by 5, and prints its
new value of 2 in the console window.

 myInt -= 5;
 printf(“myInt ---> %d\n”, myInt);

Next, myInt is multiplied by 0, and its new value of
20 is printed in the console window.

 myInt *= 10;
 printf(“myInt ---> %d\n”, myInt);

Next, myInt is divided by 4, resulting in a new value
of 5.

61

Chapter 5:
C Basics:
Variables and
Operators

 myInt /= 4;
 printf(“myInt ---> %d\n”, myInt);

Finally, myInt is divided by 2. Since 5 divided by 2 is
2.5 (not a whole number), a truncation is performed
and myInt is left with a value of 2.

 myInt /= 2;
 printf(“myInt ---> %d”, myInt);

 return 0;
}

Opening postfix.xcode
Our next program demonstrates the difference
between postfix and prefix notation (remember the
++ and -- operators defined earlier in the chapter?)
If you have a project open in Xcode, close it. In the
Finder, go into the Learn C Projects folder, then into
the 05.02 - postfix subfolder, and double-click on the
project file postfix.xcode.

Take a look at the source code in the file main.c and
try to predict the result of the two printf() calls
before you run the program. Careful, this one’s tricky.

Once your guesses are locked in, select Build and
Run from the Build menu. How’d you do? Compare
your two guesses with the output in Figure 5.9. Let’s
look at the source code.

Figure 5.9 The output generated by postfix.

Stepping Through the Source Code
The first half of main.c is pretty straightforward. The
variable myInt is defined to be of type int. Then,
myInt is assigned a value of 5. Next comes the tricky
part.

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int myInt;

 myInt = 5;

The first call to printf() actually has a statement
embedded in it. This is another great feature of
the C language. Where there’s room for a variable,
there’s room for an entire statement. Sometimes it’s

62

Chapter 5:
C Basics:
Variables and
Operators

convenient to perform two actions within the same
line of code. For example, this line of code:

printf(“myInt ---> %d\n”, myInt = myInt * 3
);

first triples the value of myInt, then passes the result
(the tripled value of myInt) on to printf(). The
same could have been accomplished using two lines
of code:

myInt = myInt * 3;
printf(“myInt ---> %d\n”, myInt);

In general, when the compiler encounters an
assignment statement where it expects a variable, it
first completes the assignment, then passes on the
result of the assignment as if it were a variable. Let’s
see this technique in action.

In main.c, our friend the postfix operator emerges
again. Just prior to the two calls of printf(),
myInt has a value of 5. The first of the two
printf()’s increments the value of myInt using
postfix notation:

 printf(“myInt ---> %d\n”, myInt++);

The use of postfix notation means that the value

of myInt will be passed on to printf() before
myInt is incremented. This means that the first
printf() will accord myInt a value of 5. However,
when the statement is finished, myInt will have a
value of 6.

The second printf() acts in a more rational (and
preferable) manner. The prefix notation guarantees
that myInt will be incremented (from 6 to 7) before
its value is passed on to printf().

 printf(“myInt ---> %d”, ++myInt);

 return 0;
}

63

Chapter 5:
C Basics:
Variables and
Operators

Can you break each of these printf()s into two
separate statements? Give it a try, then read on...

The first printf() looks like this:

printf(“myInt ---> %d\n”, myInt++);

Here’s the two statement version:

printf(“myInt ---> %d\n”, myInt);

myInt++;

Notice that the statement incrementing myInt was
placed after the printf(). Do you see why? The
postfix notation makes this necessary. Run through
both versions and verify this for yourself.

The second printf() looks like this:

printf(“myInt ---> %d”, ++myInt);

Here’s the two statement version:

++myInt;

printf(“myInt ---> %d\n”, myInt);

This time the statement incrementing myInt came
before the printf(). This time, it’s the prefix
notation that makes this necessary. Again, go through
both versions and verify this for yourself.

The purpose of demonstrating the complexity of the
postfix and prefix operators is twofold. On one hand,
it’s extremely important that you understand exactly
how these operators work from all angles. This will
allow you to write code that works and will aid you in

making sense of other programmers’ code.

On the other hand, embedding prefix and postfix
operators within function parameters may save you
lines of code but, as you can see, may prove a bit
confusing. So what’s a coder to do? Clarity before
brevity. Make sure your code is readable. After all,
you will likely have to go back and edit it at some
point. Readable code is much easier to maintain.

Backslash Combinations
The last program in Chapter 5, slasher,
demonstrates several different backslash
combinations. A backslash combination combines
a backslash character (“\”) and a second character
to produce a specific result when the combination
is printed in the console window. One backslash
combination you’ve seen a lot of in this book is “\n”,
which produces a new line in the console.

C allows you to embed any number of backslash
combinations in a text string. For example, this line
of code:

printf(“Hello\n\nGoodbye”);

produces this output in the console window:

Hello

Goodbye

64

Chapter 5:
C Basics:
Variables and
Operators

The single blank line between “Hello” and “Goodbye”
was caused by the two “\n” characters. The first “\n”
would have caused the console to put “Goodbye” on
the line immediately below “Hello”. The second “\n”
moved the “Goodbye” down one more line.

There are a number of backslash combinations. We’ll
discuss a few of the more interesting ones.

“\r” causes the cursor to move to the beginning of
the same line. This allows you to draw some text then
go back and overwrite the same text.

“\b” is a backspace character. This has the same
affect as if you hit the delete key while you were
typing, erasing the last character typed.

“\\” allows you to place a backslash character in a
string. Think about this for a moment. If you simply
embedded a backslash character in your string, the
compiler would attempt to combine the backslash
with the very next character, producing some
unpredictable results. Unpredictable is bad.

“\”” allows you to place a quote character in a
string. When the compiler first sees a double-quote
character in your code, it assumes you are starting a
text string. It keeps reading, reading, reading, until
it encounters a second, matching double-quote
character. The second quote tells the compiler that
it has reached the end of the string. So how do you
place a quote character inside a string without ending
the string? Easy. Use the “\”” where you want the
quote to appear.

“\t” allows you to place a tab in a string.

“\a” embeds a single beep in the string.

Support for Backslash Combinations
Backslash combinations stem from the olden days,
where all programs ran on video displays with a
fixed number of rows and columns. The backslash
combinations helped programmers overcome
the limitations of these displays, giving them a bit
more control. As computers evolved, many of these
backslash combinations became unnecessary. Over
time, many development environments stopped
supporting all but the most basic of these.

To see this for yourself, we’ll run our next program,
slasher, using the Terminal application that ships
with Mac OS X. The Terminal app implements a
classic console window that supports all the well
known backslash combinations, just like an old video
display terminal. We’ll use the built in Unix tools
that you installed when you installed Xcode at the
beginning of the book to compile the program as
well.

Though Xcode doesn’t support many of the backslash
combinations that we used in slasher, I built a
project file for it anyway. After you are done playing
with the Unix version of slasher, take the Xcode
version for a spin. You’ll find it in the Learn C Projects
folder, in the 05.03 – slasher subdirectory.

65

Chapter 5:
C Basics:
Variables and
Operators

Running slasher
In the Finder, go to the Learn C Projects folder, into
the 05.03 – slasher subdirectory, and double-click
on the file named slasher. The Terminal application
will launch and a new window will appear, similar
to the one shown in Figure 5.0. If you’ve never used
the Terminal before, this may look a bit cryptic. The
Terminal is similar to Xcode’s console window. No
graphics, just a scrolling series of lines of text.

Figure 5.0 Running slasher using the Terminal
application.

You can ignore the first six lines of text in the
Terminal window. The key lines of output to pay
attention to are these six:

1111100000
0011
Here’s a backslash...\...for you.
Here’s a double quote...”...for you.
Here are a few tabs...
 ...for you.

Here’s a beep......for you.

As we step through the source code, you’ll see a
series of six printf()s, each of which corresponds
to one of these lines of output. Once we finish
going through the source code, we’ll take a shot at
compiling the source using the Unix compiler and
the Terminal, instead of using Xcode.

Stepping Through the Source Code
main.c consists of a series of printf()s, each
of which demonstrates a different backslash
combination. The first printf() prints a series of
ten zeros, followed by the characters \r (also known
as the backslash combination \r). The \r backslash
combination generates a carriage return without a
line feed, leaving the cursor at the beginning of the
current line (unlike \n, which leaves the cursor at the
beginning of the next line down).

#include <stdio.h>

int main (int argc, const char * argv[])
{
 printf(“0000000000\r”);

66

Chapter 5:
C Basics:
Variables and
Operators

The next printf() prints five s over the first
five 0s, as if someone had printed the text string
“1111100000”. The \n at the end of this
printf() moves the cursor to the beginning of the
next line in the console window.

 printf(“11111\n”);

The next printf() demonstrates \b, the
backspace backslash combination. \b tells
printf() to back up one character so that the next
character printed replaces the last character printed.
This printf() sends out four 0s, backspaces over
the last two, then prints two s. The result is as if you
had printed the string “0011”.

 printf(“0000\b\b11\n”);

The \ can also be used to cancel a character’s special
meaning within a quoted string. For example,
the backslash combination \\ generates a single
\ character. The difference is, this \ loses its special
backslash powers. It doesn’t affect the character
immediately following it.

The backslash combination \” generates a “
character, taking away the special meaning of the
“. As we said earlier, without the \ before it, the “
character would mark the end of the quoted string.
The \ allows you to include a “ inside a quoted

string.

The backslash combinations \\ and \” are
demonstrated in the next two printf()s:

 printf(“Here’s a backslash...\\...for you.\
n”);

 printf(“Here’s a double quote...\”...for
you.\n”);

The \t combination generates a single tab character.
The console window has a tab stop every eight
spaces. Here’s a printf() example:

 printf(“Here’s a few tabs...\t\t\t\t...for
you.\n”);

While the Mac offers a host of sound options, most
text-based computer consoles offer one: the beep.
While a beep isn’t quite as interesting as a Clank!
or a Boing!, it can still serve a useful purpose. The
\a backslash combination provides a simple way to
make your Mac beep.

 printf(“Here’s a beep...\a...for you.\n”);

 return 0;
}

67

Chapter 5:
C Basics:
Variables and
Operators

Building slasher
This section is completely optional. You can skip it
entirely, or scan it to follow along, or do every darned
step along the way. We’re going to use the Terminal
to compile the slasher source code into a runnable
Unix application. In effect, we’re going to rebuild the
slasher app that you just ran.

In your home directory, create a new folder called
slasher. Your home directory is the directory with
the house icon, named with your login name. For
example, my home directory is in the Users folder
and is called davemark.

Next, locate the folder containing the slasher
project. You’ll find it in the Learn C Projects
directory, in the 05.03 – slasher subdirectory. Inside
that folder, you’ll find a file named main.c which
contains the slasher source code. Use the Finder
to drag a copy of main.c into the new slasher folder
you created in your home directory.

If Terminal is running, open a new window by
selecting New Shell from the File menu. If Terminal
is not running, launch it. You’ll find it in the
Applications folder, in the Utilities subfolder.

At this point, you should have a slasher folder in your
home folder containing a copy of slasher’s main.c file
and a new Terminal window which looks like the one
shown in Figure 5..

Figure 5. A brand new Terminal window.

We’re now going to type some Unix commands into
the Terminal window. Our first goal is to make sure
we can see the new slasher folder we just created in
our home directory. Type this command, followed by
a carriage return:

cd ~

Note that there is a space in between the cd and the
tilde character (“~”). This command tells Unix to
change your directory (cd) to the tilde directory. In
Unix-speak, the tilde directory is always your home
directory.

Next, you’ll type the command:

68

Chapter 5:
C Basics:
Variables and
Operators

ls

followed by a carriage return. This command asks
Unix to list all the visible files in the current directory
which, in this case, is your home directory. Here’s the
list I got:

Desktop Library Music Public
slasher

Documents Movies Pictures Sites

Note that our newly created slasher directory is in
this list. If you don’t see slasher in your list, chances
are good that you created the directory in the wrong
place. Go find the folder, drag it into your home
directory, then go back to Terminal and do another
ls.

Next, let’s go into the slasher directory and make
sure the main.c file is there. Issue these two
commands:

cd slasher
ls

Remember to type a carriage return after each
command. The first command changes directories to
the slasher directory. The second command lists the
visible files in that directory. Here’s the results of my

ls:

main.c

If your slasher directory is empty, you did not
successfully copy main.c into the slasher folder you
created. Go fix that.

Once ls shows main.c in the slasher directory, you
are ready to do a compile. Type this command:

cc -o slasher main.c

Be sure to end it with a carriage return. You’ve just
asked Unix to compile the C code in the file main.c
and link the resulting object code into an executable
file named slasher. The “-o” tells the cc command
that you want to name the output, the word
“slasher” tells it the name to use. If you left out the
“-o slasher” from the command, cc would put
the output in a file named a.out.

To see the results of your compile, do another ls.
Here’s the results you should see:

main.c slasher

Notice that a new file named slasher has been
created. You can run this program by typing this

69

Chapter 5:
C Basics:
Variables and
Operators

command:

./slasher

Note the “./” before the word slasher. This tells
Unix to run the slasher in the current directory,
as opposed to some other file named slasher that
might be elsewhere in its search path.

Here’s the output I saw when I ran my copy of
slasher:

1111100000
0011
Here’s a backslash...\...for you.
Here’s a double quote...”...for you.
Here are a few tabs...
 ...for you.

Here’s a beep......for you.

Feel free to quit Terminal. Your work here is done.

Those are all the sample programs for this chapter.
Before we move on, however, I’d like to talk to you
about something personal. It’s about your coding
habits.

Sprucing Up Your Code
You are now in the middle of your C learning curve.
You’ve learned about variables, types, functions, and
bytes. You’ve learned about an important part of the
Standard Library, the function printf(). It’s at this
point in the learning process that programmers start
developing their coding habits.

Coding habits are the little things programmers
do that make their code a little bit different (and
hopefully better!) than anyone else’s. Before you get
too set in your ways, here are a few coding habits you
can, and should, add to your arsenal.

Source Code Spacing
You may have noticed the tabs, spaces, and blank
lines scattered throughout the sample programs.
These are known in C as white space. With a few
exceptions, white space is ignored by C compilers.
Believe it or not, as far as the C compiler goes, this
program:

#include <stdio.h>
int main (int argc,
const char * argv[]){
 int myInt;myInt

=
5
;
printf(“myInt=”,myInt);}

70

Chapter 5:
C Basics:
Variables and
Operators

is equivalent to this program:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int myInt;

 myInt = 5;
 printf(“myInt =”, myInt);
}

The C compiler doesn’t care if you put five
statements per line, or if you put 20 carriage returns
between your statements and your semicolons. One
thing the compiler won’t let you do is place white
space in the middle of a word, such as a variable or
function name. For example, this line of code:

my Int = 5;

won’t compile. Instead of a single variable named
myInt, the compiler sees two items, one named my
and the other named Int. Too much white space
can confuse the compiler.

Too little white space can also confuse the compiler.
For example, this line of code won’t compile:

intmyInt;

The compiler needs at least one piece of white space
to tell it where the type ends and where the variable
begins. On the other hand, as you’ve already seen,
this line compiles just fine:

myInt=5;

Since a variable name can’t contain the character
“=”, the compiler has no problem telling where the
variable ends and where the operator begins.

As long as your code compiles properly, you’re free to
develop your own white-space style. Here are a few
hints...

4 Place a blank line between your variable
declarations and the rest of your function’s code.
Also, use blank lines to group related lines of code.

4 Sprinkle single spaces throughout a statement.
Compare this line:

 printf(“myInt=”,myInt);

with this line:

 printf(“myInt =”, myInt);

71

Chapter 5:
C Basics:
Variables and
Operators

The spaces make the second line easier to
read.

4 When in doubt, use parentheses. Compare this
line:

 myInt=var1+2*var2+4;

 with this line:

 myInt = var1 + (2*var2) + 4;

What a difference parentheses and spaces make!

4 Always start variable names with a lower-case
letter, using an upper-case letter at the start of
each subsequent word in the name. This yields
variable names such as myVar, areWeDone,
and employeeName.

4 Always start function names with an upper-case
letter, using an upper-case letter at the start of
each subsequent word in the name. This yields
function names such as DoSomeWork(),
HoldThese(), and DealTheCards().

These hints are merely suggestions. Use a set of

standards that make sense for you and the people
with whom you work. The object here is to make
your code as readable as possible.

Comment Your Code
One of the most critical elements in the creation
of a computer program is clear and comprehensive
documentation. When you deliver your award-
winning graphics package to your customers, you’ll
want to have two sets of documentation. One set
is for your customers, who’ll need a clear set of
instructions that guide them through your wonderful
new creation.

The other set of documentation consists of the
comments you’ll weave throughout your code.
Source code comments act as a sort of narrative,
guiding a reader through your source code. You’ll
include comments that describe how your code
works, what makes it special, and what to look out
for when changing it. Well-commented code includes
a comment at the beginning of each function that
describes the function, the function parameters,
and the function’s variables. It’s also a good idea to
sprinkle individual comments among your source
code statements, explaining the role each line plays
in your program’s algorithm. How do you add a
comment to your source code? Take a look...

All C compilers recognize the sequence /* as the
start of a comment and will ignore all characters
until they hit the sequence */ (the end of comment

72

Chapter 5:
C Basics:
Variables and
Operators

characters). Here’s some commented code:

int main (int argc, const char * argv[])
{
 int numPieces;/* Number of pieces of pie left
*/

 numPieces = 8; /* We started with 8 pieces
*/

 numPieces--; /* Marge had a piece */
 numPieces--; /* Lisa had a piece */
 numPieces -= 2;/* Bart had two pieces!! */
 numPieces -= 4;/* Homer had the rest!!! */

 printf(“Slices left = %d”, numPieces);
/* How about

some cake
instead? */

 return 0;
}

Notice that, although most of the comments fit on
the same line, the last comment was split between
three lines. The above code will compile just fine.

Most modern C compilers will also accept the C++
commenting convention. C++ ignores the remainder
of a line of code, once it encounters the characters
“//”. For example, this line of code combines both
comment styles:

printf(“Hello” /* C comment */); //
C++ comment!!!

Use the C++ comment mechanism if you are sure
you won’t be porting your code to a C compiler that
doesn’t understand the C++ mechanism.

Since each of the programs in this book are examined
in detail, line by line, the comments were left out.
This was done to make the examples as simple as
possible. In this instance, do as we say, not as we do.
Comment your code. No excuses!

73

Chapter 5:
C Basics:
Variables and
Operators

What’s Next?
This chapter introduced the concepts of variables and
operators, tied together in C statements, separated
by semicolons. We looked at several examples, each
of which made heavy use of the Standard Library
function printf(). We learned about the console
window, quoted strings, and backslash combinations.

Chapter 6 will increase our programming options
significantly, introducing C control structures such as
the for loop and the if ... then ... else
statement. Get ready to expand your C-programming
horizons. See you in Chapter 6.

74

Chapter 5:
C Basics:
Variables and
Operators

Exercises

) Find the error in each of the following code
fragments:

 a. printf(Hello, world);

 b. int myInt myOtherInt;

 c. myInt =+ 3;

 d. printf(“myInt = %d”);

 e. printf(“myInt = “, myInt);

 f. printf(“myInt = %d\”, myInt);

 g. myInt + 3 = myInt;

 h. int main (int argc, const char * argv[])
 {
 int myInt;
 myInt = 3;
 anotherInt = myInt;

 return 0;
 }

2) Compute the value of myInt after each code
fragment is executed:

 a. myInt = 5;
 myInt *= (3+4) * 2;

 b. myInt = 2;
 myInt *= ((3*4) / 2) - 9;

 c. myInt = 2;
 myInt /= 5;
 myInt--;

 d. myInt = 25;
 myInt /= 3 * 2;

 e. myInt = (3*4*5) / 9;
 myInt -= (3+4) * 2;

 f. myInt = 5;
 printf(“myInt = %d”, myInt = 2);

 g. myInt = 5;
 myInt = (3+4) * 2;

 h. myInt = 1;
 myInt /= (3+4) / 6;

�
Chapter 6 Controlling Your Program's Flow

75

o far, you’ve learned quite a bit about the C language.
You know about functions (especially one named
main()), which are made up of statements, each of
which is terminated by a semicolon. You know about
variables, which have a name and a type. Up to this
point, you’ve dealt with variables of type int.

You also know about operators, such as =, +, and +=.
You’ve learned about postfix and prefix notation, and
the importance of writing clear, easy-to-understand
code. You’ve learned about the Standard Library, a
set of functions that comes as standard equipment
with every C programming environment. You’ve also
learned about printf(), an invaluable component
of the Standard Library.

Finally, you’ve learned a few housekeeping
techniques to keep your code fresh, sparkling,
and readable. Comment your code, because your
memory isn’t perfect, and insert some white space to
keep your code from getting too cramped.

Flow Control
One thing you haven’t learned about the C language
is flow control. The programs we’ve written so far
have all consisted of a straightforward series of
statements, one right after the other. Every statement
is executed in the order it occurred.

Flow control is the ability to control the order in
which your program’s statements are executed. The
C language provides several keywords you can use in
your program to control your program’s flow. One of
these is the if keyword.

The if Statement
The if keyword allows you to choose between
several options in your program. In English, you
might say something like this:

If it’s raining outside I’ll bring my
umbrella;

otherwise I won’t.

In this sentence, you’re using if to choose between

76

Chapter 6:
Controlling Your
Program's Flow

two options. Depending on the weather, you’ll do one
of two things. You’ll bring your umbrella or you won’t
bring your umbrella. C’s if statement gives you this
same flexibility. Here’s an example:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int myInt;

 myInt = 5;

 if (myInt == 0)
 printf(“myInt is equal to zero.”);
 else
 printf(“myInt is not equal to zero.”);

 return 0;
}

This program declares myInt to be of type int
and sets the value of myInt to 5. Next, we use the
if statement to test whether myInt is equal to
0. If myInt is equal to 0 (which we know is not
true), we’ll print one string. Otherwise, we’ll print a
different string. As expected, this program prints the
string “myInt is not equal to zero”.

if statements come two ways. The first, known as
plain old if, fits this pattern:

if (expression)
 statement

An if statement will always consist of the word if,
a left parenthesis, an expression, a right parenthesis,
and a statement. (We’ll define both expression and
statement in a minute.) This first form of if executes
the statement if the expression in parentheses is true.
An English example of the plain if might be:

If it’s raining outside, I’ll bring my
umbrella.

Notice that this statement only tells us what will
happen if it’s raining outside. No particular action
will be taken if it is not raining.

The second form of if, known as if-else, fits this
pattern:

if (expression)
 statement
else
 statement

An if-else statement will always consist of the
word if, a left parenthesis, an expression, a right
parenthesis, a statement, the word else, and a
second statement. This form of if executes the first
statement if the expression is true, and executes
the second statement if the expression is false. An
English example of an if-else statement might be:

77

Chapter 6:
Controlling Your
Program's Flow

If it’s raining outside, I’ll bring my
umbrella,

otherwise I won’t.

Notice that this example tells us what will happen
if it is raining outside (I’ll bring my umbrella) and if
it isn’t raining outside (I won’t bring my umbrella).
The example programs presented later in the chapter
demonstrate the proper use of both if and if-
else.

Our next step is to define the terms expression and
statement.

Expressions
In C, an expression is anything that has a value. For
example, a variable is a type of expression, since
variables always have a value. (Even uninitialized
variables have a value—we just don’t know what
the value is!) The following are all examples of
expressions:

4 myInt + 3

4 (myInt + anotherInt) * 4

4 myInt++

An assignment statement is also an expression. Can
you guess the value of an assignment statement?
Think back to Chapter 5. Remember when we
included an assignment statement as a parameter to
printf()? The value of an assignment statement is
the value of its left side. Check out the following code
fragment:

myInt = 5;
myInt += 3;

Both of these statements qualify as expressions.
The value of the first expression is 5. The value of
the second expression is 8 (because we added 3 to

78

Chapter 6:
Controlling Your
Program's Flow

myInt’s previous value).

Literals can also be used as expressions. The
number 8 has a value. Guess what? Its value is 8.
All expressions, no matter what their type, have a
numerical value.

Technically, there is an exception to this rule. The
expression (void)0 has no value. In fact, any value
or variable cast to type void has no value. Ummm,
but Dave, what’s a cast? What is type void? We’ll
get to both of these topics later in the book. For the
moment, when you see void, think “no value”.

True Expressions
Earlier, we defined the if statement as follows:

if (expression)
 statement

We then said the statement gets executed if the
expression is true. Let’s look at C’s concept of truth.

Everyone has an intuitive understanding of the
difference between true and false. I think we’d all
agree that the statement:

5 equals 3

is false. We’d also agree that the statement:

5 and 3 are both greater than 0

is true. This intuitive grasp of true and false carries
over into the C language. In the case of C, however,
both true and false have numerical values. Here’s
how it works.

In C, any expression that has a value of 0 is said to
be false. Any expression with a value other than 0 is
said to be true. As stated earlier, an if statement’s
statement gets executed if its expression is true. To
put this more accurately:

4 An if statement’s statement gets executed if (and
only if) its expression has a value other than 0.

Here’s an example:

myInt = 27;

if (myInt)
 printf(“myInt is not equal to 0”);

The if statement in this piece of code first tests the
value of myInt. Since myInt is not equal to 0, the
printf() gets executed.

79

Chapter 6:
Controlling Your
Program's Flow

Comparative Operators
C expressions have a special set of operators, called
comparative operators. Comparative operators
compare their left sides with their right sides and
produce a value of either 1 or 0, depending on the
relationship of the two sides.

For example, the operator == determines whether
the expression on the left is equal in value to the
expression on the right. The expression:

myInt == 5

evaluates to if myInt is equal to 5, and to 0 if
myInt is not equal to 5. Here’s an example of the ==
operator at work:

if (myInt == 5)
 printf(“myInt is equal to 5”);

If myInt is equal to 5, the expression myInt == 5
evaluates to and printf() gets called. If myInt
wasn’t equal to 5, the expression evaluates to 0 and
the printf() is skipped. Just remember, the key
to triggering an if statement is an expression that
resolves to a value other than 0.

Figure 6. shows some of the other comparative
operators. You’ll see some of these operators in the
example programs later in the chapter.

Resolves to 1 if...Operator
left side is equal to right==

left side is less than or equal to right<=
left side is greater than or equal to right>=

left side is less than right>=
left side is greater than right>=
left side is not equal to right>=

Figure 6. Comparitive Operators

Logical Operators
The C standard provides a pair of constants that
really come in handy when dealing with our next set
of operators. The constant true has a value of ,
while the constant false has a value of 0. You can
use these constants in your programs to make them a
little easier to read. Read on, and you’ll see why.

In addition to true and false, most C
environments also provide the constants TRUE and
FALSE (with values of 1 and 0 respectively). Some
people prefer TRUE and FALSE, others prefer true
and false. Pick a pair and stick with them. We’ll
work with true and false throughout the rest of
the book.

When you get to the truthTester program in
just a bit, you’ll find a #include of the file <c.h>
at the beginning of the file. This is where true and
false are defined.

80

Chapter 6:
Controlling Your
Program's Flow

Our next set of operators are known, collectively,
as logical operators. The set of logical operators
are modeled on the mathematical concept of truth
tables. If you don’t know much about truth tables (or
are just frightened by mathematics in general), don’t
panic. Everything you need to know is outlined in the
next few paragraphs.

The first of the set of logical operators is the !
operator. The ! operator turns true into false
and false into true. Figure 6.2 shows the truth
table for the ! operator. In this table, T stands for
true and F stands for false. The letter A in the
table represents an expression. If the expression A is
true, applying the ! operator to A yields the value
false. If the expression A is false, applying the !
operator to A yields the value true. The ! operator
is commonly referred to as the NOT operator. !A is
pronounced “NOT A”.

!AA
FT
TF

Figure 6.2 The truth table for the ! operator.

Here’s a piece of code that demonstrates the !
operator:

int myFirstInt, mySecondInt;

myFirstInt = false;
mySecondInt = ! myFirstInt;

First, we declare two ints. We assign the value
false to the first int, then use the ! operator to
turn the false into a true and assign it to the
second int. This is really important. Take another
look at Figure 6.2. The ! operator converts true
into false and false into true. What this really
means is that ! converts to 0 and 0 to . This really
comes in handy when you are working with an if
statement’s expression, like this one:

if (mySecondInt)
 printf(“mySecondInt must be true”);

The previous chunk of code translated
mySecondInt from false to true, which is the
same thing as saying that mySecondInt has a value
of . Either way, mySecondInt will cause the if to
fire, and the printf() will get executed.

Take a look at this piece of code:

if (! mySecondInt)
 printf(“mySecondInt must be false”);

81

Chapter 6:
Controlling Your
Program's Flow

This printf() will get executed if mySecondInt
is false. Do you see why? If mySecondInt is
false, then !mySecondInt must be true.

The ! operator is a unary operator. Unary operators
operate on a single expression (the expression to
the right of the operator). The other two logical
operators, && and ||, are binary operators. Binary
operators, such as the == operator presented earlier,
operate on two expressions, one on the left side and
one on the right side of the operator.

The && operator is commonly referred to as the and
operator. The result of an && operation is true if,
and only if, both the left side and the right side are
true. Here’s an example:

int hasCar, hasTimeToGiveRide;

hasCar = true;
hasTimeToGiveRide = true;

if (hasCar && hasTimeToGiveRide)
 printf(“Hop in - I’ll give you a ride!\n”);
else
 printf(“I’ve either got no car, no time, or
neither!\n”);

This example uses two variables. One indicates
whether the program has a car, the other whether
the program has time to give us a ride to the mall.
All philosophical issues aside (can a program have
a car?), the question of the moment is, which of the

two printf()’s will fire? Since both sides of the
&& were set to true, the first printf() will be
called. If either one (or both) of the variables were set
to false, the second printf() would be called.
Another way to think of this is that we’ll only get
a ride to the mall if our friendly program has a car
and has time to give us a ride. If either of these is not
true, we’re not getting a ride. By the way, notice the
use here of the second form of if, the if-else
statement.

The || operator is commonly referred to as the or
operator. The result of a || operation is true if
either the left side or the right side, or both sides, of
the || are true. Put another way, the result of a ||
is false if, and only if, both the left side and the
right side of the || are false. Here’s an example:

int nothingElseOn, newEpisode;

nothingElseOn = true;
newEpisode = true;

if (newEpisode || nothingElseOn)
 printf(“Let’s watch Star Trek!\n”);
else
 printf(“Something else is on or I’ve seen
this one.\n”);

This example uses two variables to decide whether or
not we should watch Star Trek (your choice - TOS,
TNG, DS9, STV, or STE). One variable indicates
whether anything else is on right now, and the other

82

Chapter 6:
Controlling Your
Program's Flow

tells you whether this episode is a rerun. If this is
a brand new episode, or if nothing else is on, we’ll
watch Star Trek.

Here’s a slight twist on the previous example:

int nothingElseOn, itsARerun;

nothingElseOn = true;
itsARerun = false;

if ((! itsARerun) || nothingElseOn)
 printf(“Let’s watch Star Trek!\n”);
else
 printf(“Something else is on or I’ve seen
this one.\n”);

This time, we’ve replaced the variable newEpisode
with its exact opposite, itsARerun. Look at the
logic that drives the if statement. Now we’re
combining itsARerun with the ! operator. Before,
we cared whether the episode was a newEpisode.
This time we are concerned that the episode is not a
rerun. See the difference?

truthTester.xcode
Both the && and the || operators are summarized
in the table in Figure 6.3. If you look in the folder
Learn C Projects, you’ll find a subfolder
named 06.0 - truthTester. main.c contains the three
examples we just went through. Take some time to
play with the code. Take turns changing the variables

from true to false and back again. Use this code
to get a good feel for the !, &&, and || operators.

You might also try commenting out the line
#include <c.h> towards the top of the file.
To do this, just insert the characters // at the very
beginning of the line. When you compile, you’ll get
an error telling you that “true is undeclared”. Worth
remembering this! As you write your own programs,
be sure to #include <c.h> if you want to use
true and false.

BA A || BA && B
TT
FT
TF
FF

TT
TF
TF
FF

Figure 6.3 Truth table for the && and || operators.

On most keyboards, you type an & character by
holding down the shift key and typing a 7. You type a
| character by holding down the shift key and typing
a \ (backslash). Don’t confuse the | with the letter l,
i, or with the ! character.

Compound Expressions
All of the examples presented so far have consisted of
relatively simple expressions. Here’s an example that

83

Chapter 6:
Controlling Your
Program's Flow

combines several different operators:

int myInt;

myInt = 7;

if ((myInt >= 1) && (myInt <= 10))
 printf(“myInt is between 1 and 10”);
else
 printf(“myInt is not between 1 and 10”);

This example tests whether a variable is in the range
between and 0. The key here is the expression:

(myInt >= 1) && (myInt <= 10)

that lies between the if statement’s parentheses.
This expression uses the && operator to combine
two smaller expressions. Notice that the two smaller
expressions were each surrounded by parentheses to
avoid any ambiguity. If we left out the parentheses,
like so:

myInt >= 1 && myInt <= 10

the expression might not be interpreted as we
intended. Once again, use parentheses for safe
computing.

Statements
At the beginning of the chapter, we defined the if
statement as:

if (expression)
 statement

We’ve covered expressions pretty thoroughly. Now,
we’ll turn our attention to the statement.

At this point in the book, you probably have a pretty
intuitive model of the statement. You’d probably
agree that this:

myInt = 7;

is a statement. But is this:

if (isCold)
 printf(“Put on your sweater!”);

one statement or two? Actually, the previous code
fragment is a statement within another statement.
The printf() is one statement, residing within a
larger statement, the if statement.

The ability to break your code out into individual
statements is not a critical skill. Getting your code
to compile, however, is critical. As new types of
statements are introduced (like the if and if-

84

Chapter 6:
Controlling Your
Program's Flow

else introduced in this chapter) pay attention to
the statement syntax. And pay special attention to
the examples. Where do the semicolons go? What
distinguishes this type of statement from all other
types?

As you build up your repertoire of statement types,
you’ll find yourself using one type of statement
within another. That’s perfectly acceptable in C. In
fact, every time you create an if statement, you’ll
use at least two statements, one within the other.
Take a look at this example:

if (myVar >= 1)
 if (myVar <= 10)
 printf(“myVar is between 1 and 10”);

This example used an if statement as the statement
for another if statement. This example calls the
printf() if both if expressions are true; that is,
if myVar is greater than or equal to and less than or
equal to 0. You could have accomplished the same
result with this piece of code:

if ((myVar >= 1) && (myVar <= 10))
 printf(“myVar is between 1 and 10”);

The second piece of code is a little easier to read.
There are times, however, when the method
demonstrated in the first piece of code is preferred.

Take a look at this example:

if (myVar != 0)
 if ((1 / myVar) < 1)
 printf(“myVar is in range”);

One thing you don’t want to do in C is divide a
number by 0. Any number divided by zero is infinity,
and infinity is a foreign concept to the C language.
If your program ever tries to divide a number by 0,
your program is likely to crash. The first expression
in this example tests to make sure myVar is not
equal to zero. If myVar is equal to zero, the second
expression won’t even be evaluated! The sole purpose
of the first if is to make sure the second if never
tries to divide by zero. Make sure you understand
this point. Imagine what would happen if we wrote
the code this way:

if ((myVar != 0) && ((1 / myVar) < 1))
 printf(“myVar is in range”);

As it turns out, if the left half of the && operator
evaluates to false, the right half of the expression
will never be evaluated and the entire expression will
evaluate to false. Why? Because if the left operand
is false, it doesn’t matter what the right operand
is – true or false, the expression will evaluate
to false. Be aware of this as you construct your
expressions.

85

Chapter 6:
Controlling Your
Program's Flow

The Curly Braces { }
Earlier in the book, you learned about the curly
braces that surround the body of every function.
These braces also play an important role in statement
construction. Just as parentheses can be used to
group terms of an expression together, curly braces
can be used to group multiple statements together.
Here’s an example:

onYourBack = TRUE;

if (onYourBack)
{
 printf(“Flipping over”);
 onYourBack = FALSE;
}

In the example, if onYourBack is true, both of the
statements in curly braces will be executed. A pair of
curly braces can be used to combine any number of
statements into a single super-statement, also known
as a block. You can use this technique anywhere a
statement is called for.

Curly braces can be used to organize your code,
much as you’d use parentheses to ensure that an
expression is evaluated properly. This concept is
especially appropriate when dealing with nested
statements. Consider this code, for example:

if (myInt >= 0)
 if (myInt <= 10)

 printf(“myInt is between 0 and 10.\n”);
else
 printf(“myInt is negative.\n”); /* <---
Error!!! */

Do you see the problem with this code? Which
if does the else belong to? As written (and as
formatted), the else looks like it belongs to the
first if. That is, if myInt is greater than or equal to
0, the second if is executed, otherwise the second
printf() is executed. Is this right?

Nope. As it turns out, an else belongs to the if
closest to it (the second if, in this case). Here’s a
slight rewrite:

if (myInt >= 0)
 if (myInt <= 10)
 printf(“myInt is between 0 and 10.\n”);
 else
 printf(“myInt is not between 0 and 10.\
n”);

One point here is that formatting is nice, but it won’t
fool the compiler. More importantly, this example
shows how easy it is to make a mistake. Check out
this version of the code:

if (myInt >= 0)
{
 if (myInt <= 10)
 printf(“myInt is between 0 and 10.\n”);

86

Chapter 6:
Controlling Your
Program's Flow

}
else
 printf(“myInt is negative.\n”);

Do you see how the curly braces help? In a sense,
they act to hide the second if inside the first if
statement. There is no chance for the else to
connect to the hidden if.

No one I know ever got fired for using too many
parentheses or too many curly braces.

Where to Place the Semicolon
So far, the statements we’ve seen fall into two
categories. Function calls, such as calls to
printf(), and assignment statements are called
simple statements. Always place a semicolon at the
end of a simple statement, even if it is broken over
several lines, like this:

printf(“%d%d%d%d”, var1,
 var2,
 var3,
 var4);

Statements made up of several parts, including,
possibly, other statements, are called compound
statements. Compound statements obey some pretty
strict rules of syntax. The if statement, for example,
always looks like this:

if (expression)
 statement

Notice there are no semicolons in this definition. The
statement part of the if can be a simple statement
or a compound statement. If the statement is simple,
follow the semicolon rules for simple statements and
place a semicolon at the end of the statement. If the
statement is compound, follow the semicolon rules
for that particular type of statement.

Notice that using “curlies” to build a super-statement
or block out of smaller statements does not require
the addition of a semicolon.

The Loneliest Statement
Guess what? A single semicolon qualifies as a
statement, albeit a somewhat lonely one. For
example, this code fragment:

if (bored)
 ;

is a legitimate (and thoroughly useless) if statement.
If bored is true, the semicolon statement gets
executed. The semicolon by itself doesn’t do anything
but fill the bill where a statement is needed. There are
times where the semicolon by itself is exactly what
you need.

87

Chapter 6:
Controlling Your
Program's Flow

The while Statement
The if statement uses the value of an expression to
decide whether to execute or skip over a statement.
If the statement is executed, it is executed just once.
Another type of statement, the while statement,
repeatedly executes a statement as long as a specified
expression is true. The while statement follows
this pattern:

while (expression)
 statement

The while statement is also known as the while
loop, because once the statement is executed, the
while loops back to reevaluate the expression.
Here’s an example of the while loop in action:

int i;

i=0;

while (++i < 3)
 printf(“Looping: %d\n”, i);

printf(“We are past the while loop.”);

This example starts by declaring a variable, i, to be of
type int. i is then initialized to 0. Next comes the
while loop. The first thing the while loop does is
evaluate its expression. The while loop’s expression is:

++i < 3

Before this expression is evaluated, i has a value of
0. The prefix notation used in the expression (++i)
increments the value of i to before the remainder
of the expression is evaluated. The evaluation of the
expression results in true since is less than 3. Since
the expression is true, the while loop’s statement,
a single printf() is executed. Here’s the output
after the first pass through the loop:

Looping: 1

Next, the while loops back and reevaluates
its expression. Once again, the prefix notation
increments i, this time to a value of 2. Since 2 is less
than 3, the expression evaluates to true, and the
printf() is executed again. Here’s the output after
the second pass through the loop:

Looping: 1
Looping: 2

Once the second printf() completes, it’s back to
the top of the loop to reevaluate the expression. Will
this never end? Once again, i is incremented, this
time to a value of 3. Aha! This time, the expression
evaluates to false, since 3 is not less than 3. Once

88

Chapter 6:
Controlling Your
Program's Flow

the expression evaluates to false, the while loop
ends and control passes to the next statement, the
second printf() in our example:

printf(“We are past the while loop.”);

The while loop was driven by three factors:
initialization, modification, and termination.
Initialization is any code that affects the loop, but
occurs before the loop is entered. In our example, the
critical initialization occurred when the variable i
was set to 0.

Frequently, you’ll use a variable in a loop that changes
value each time through the loop. In our example,
the variable i was incremented by 1 each time
through the loop. The first time through the loop, i
had a value of 1. The second time, i had a value of 2.
Variables that maintain a value based on the number
of times through a loop are known as counters.

In the interest of clarity, some programmers use
names like counter, or loopCounter. The nice
thing about names like i, j, and k is that they don’t
get in the way, they don’t take up a lot of space on the
line. On the other hand, your goal should be to make
your code as readable as possible, so it would seem
that a name like counter would be better than the
uninformative i, j, or k.

Once again, pick a style you are comfortable with and
stick with it!

Modification is any code within the loop that changes
the value of the loop’s expression. In our example, the
modification occurred within the expression itself when
the counter, i, was incremented.

Termination is any condition that causes the loop to
terminate. In our example, termination occurs when
the expression has a value of false. This occurs
when the counter, i, has a value that is not less than
3. Take a look at this example:

int i;

i=1;

while (i < 3)
{
 printf(“Looping: %d\n”, i);
 i++;
}

printf(“We are past the while loop.”);

This example produces the same results as
the previous example. This time, however, the
initialization and modification conditions have
changed slightly. In this example, i starts with a
value of instead of 0. In the previous example, the
++ operator was used to increment i at the very top
of the loop. This example modifies i at the bottom of
the loop.

Both of these examples show different ways to

89

Chapter 6:
Controlling Your
Program's Flow

accomplish the same end. The phrase, “There’s
more than one way to eat an Oreo,” sums up the
situation perfectly. There will always be more than
one solution to any programming problem. Don’t
be afraid to do things your own way. Just make sure
your code works properly and is easy to read.

The for Statement
Nestled inside the C toolbox, right next to the
while statement, is the for statement. The for
statement is similar to the while statement,
following the basic model of initialization,
modification, and termination. Here’s the pattern for
a for statement:

for (expression1 ; expression2 ; expression3
)

 statement

The first expression represents the for statement’s
initialization. Typically, this expression consists of
an assignment statement, setting the initial value of
a counter variable. This first expression is evaluated
once, at the beginning of the loop.

The second expression is identical in function to
the expression in a while statement, providing the
termination condition for the loop. This expression
is evaluated each time through the loop, before the
statement is executed.

Finally, the third expression provides the

modification portion of the for statement. This
expression is evaluated at the bottom of the loop,
immediately following execution of the statement.

All three of these expressions are optional and may
be left out entirely. For example, here’s a for loop
that leaves out all three expressions:

for (; ;)

DoSomethingForever();

Since this loop has no terminating expression, it is
known as an infinite loop. Infinite loops are generally
considered bad form and should be avoided like the
plague!

The for loop can also be described in terms of a
while loop:

expression1;
while (expression2)
{
 statement
 expression3;
}

90

Chapter 6:
Controlling Your
Program's Flow

Since you can always rewrite a for loop as a while
loop, why introduce the for loop at all? Sometimes,
a programming idea fits more naturally into the
pattern of a for statement. If the for loop makes
for more readable code, why not use it? As you write
more and more code, you’ll develop a sense for when
to use the while and when to use the for.

Here’s an example of a for loop:

int i;

for (i = 1; i < 3; i++)
 printf(“Looping: %d\n”, i);

printf(“We are past the for loop.”);

This example is identical in functionality to the
while loops presented earlier. Note the three
expressions on the first line of the for loop. Before
the loop is entered, the first expression is evaluated
(remember, assignment statements make great
expressions):

i = 1

Once the expression is evaluated, i has a value of
. We are now ready to enter the loop. At the top of
each pass through the loop, the second expression is
evaluated:

i < 3

If the expression evaluates to true, the loop
continues. Since i is less than 3, we can proceed.
Next, the statement is executed:

printf(“Looping: %d\n”, i);

Here’s the first line of output:

Looping: 1

Having reached the bottom of the loop, the for
evaluates its third expression:

i++

This changes the value of i to 2. Back to the top of
the loop. Evaluate the termination expression:

i < 3

Since i is still less than 3, the loop continues. Once
again, the printf() does its thing. The console
window looks like this:

91

Chapter 6:
Controlling Your
Program's Flow

Looping: 1
Looping: 2

Next, the for evaluates expression3:

i++

incrementing the value of i to 3. Back to the top of
the loop. Evaluate the termination expression:

i < 3

Lo and behold! Since i is no longer less than 3, the
loop ends and the second printf() in our example
is executed:

printf(“We are past the for loop.”);

As was the case with while, for can take full
advantage of a pair of curly braces:

for (i = 0; i < 10; i++)
{
 DoThis();
 DoThat();
 DanceALittleJig();
}

In addition, both while and for can take advantage

of the loneliest statement, the lone semicolon. This
example:

for (i = 0; i < 1000; i++)
 ;

does nothing ,000 times. Actually, the example
does take some time to execute. The initialization
expression is evaluated once, and the modification
and termination expressions are each evaluated ,000
times. Here’s a while version of the loneliest loop:

i = 0;

while (i++ < 1000)
 ;

Some compilers will eliminate this loop and just
set i to its terminating value (the value it would
have if the loop executed normally). This is known
as code optimization. The nice thing about code
optimization is that it can make your code run
faster and more efficiently. The down side is that
an optimization pass on your code can sometimes
have unwanted side-effects, like eliminating the
while loop just discussed. It’s a good idea to get to
know your compiler’s optimization capabilities and
tendencies. Read the documentation!

92

Chapter 6:
Controlling Your
Program's Flow

loopTester.xcode
Interestingly, there is an important difference
between the for and while loops you just saw.
Take a minute to look back and try to predict the
value of i the first time through each loop and after
each loop terminates. Were the results the same for
the while and for loops? Hmmm... You might want
to take another look. Here’s a sample program that
should clarify the difference between these two
loops. Look in the folder Learn C Projects, inside
the subfolder named 06.02 - loopTester, and open
the project loopTester.xcode. main.c implements a
while loop and two slightly different for loops.
Run the project. Your output should look like that
shown in Figure 6.4.

Figure 6.4 The output from loopTester, showing the
output from 3 different loops.

loopTester starts off with the standard
#include. main() defines a counter variable, i,
sets i to 0, then enters a while loop:

 while (i++ < 4)
 printf(“while: i=%d\n”, i);

The loop executes 4 times, resulting in this output:

while: i=1
while: i=2
while: i=3
while: i=4

93

Chapter 6:
Controlling Your
Program's Flow

Do you see why? If not, go through the loop yourself,
calculating the value for i each time through the
loop. Remember, since we are using postfix notation
(i++), i gets incremented after the test is made to
see if it is less than 4. The test and the increment
happen at the top of the loop, before the loop is
entered.

Once the loop completes, we print the value of i
again:

 printf(“After while loop, i=%d.\n\n”, i);

Here’s the result:

After while loop, i=5.

Here’s how we got that value. The last time through
the loop (with i equal to 4), we go back to the top of
the while loop, test to see if i is less than 4 (it no
longer is), then do the increment of i, bumping it
from 4 to 5.

OK, one loop down, two to go. This next loop
looks like it should accomplish the same thing. The
difference is, we don’t do the increment of i till the
bottom of the loop, till we’ve been through the loop
once already.

 for (i = 0; i < 4; i++)

 printf(“first for: i=%d\n”, i);

As you can see by the output, I

 ranges from 0 to 3 instead of from to 4.

first for: i=0
first for: i=1
first for: i=2
first for: i=3

Once we drop out of the for loop, we once again
print the value of i:

 printf(“After first for loop, i=%d.\n\n”, i
);

Here’s the result:

After first for loop, i=4.

As you can see, the while loop ranged i from to
4, leaving i with a value of 5 at the end of the loop.
The for loop ranged i from 0 to 3, leaving i with
a value of 4 at the end of the loop. So how do we fix
the for loop so it works the same way as the while
loop? Take a look:

 for (i = 1; i <= 4; i++)
 printf(“second for: i=%d\n”, i);

94

Chapter 6:
Controlling Your
Program's Flow

This for loop started i at instead of 0. It tests to
see if i is less than or equal to 4 instead of just less
than 4. We could also have used the terminating
expression i < 5 instead. Either one will work. As
proof, here’s the output from this loop:

second for: i=1
second for: i=2
second for: i=3
second for: i=4

Once again, we print the value of i at the end of the
loop:

 printf(“After second for loop, i=%d.\n”, i
);

 return 0;
}

Here’s the last piece of output:

After second for loop, i=5.

This second for loop is the functional equivalent to
the while loop. Take some time to play with this
code. You might try to modify the while loop to
match the first for loop.

By far, the while and for statements are the

most common types of C loops. For completeness,
however, we’ll cover the remaining loop, a little-used
gem called the do statement.

The do Statement
The do statement is a while statement that
evaluates its expression at the bottom of its loop,
instead of at the top. Here’s the pattern a do
statement must match:

do
 statement
while (expression) ;

Here’s a sample:

i = 1;

do
{
 printf(“%d\n”, i);
 i++;
}
while (i < 3);

printf(“We are past the do loop.”);

The first time through the loop, i has a value of .
The printf() prints a in the console window,
then the value of i is bumped to 2. It’s not until this
point that the expression (i < 3) is evaluated.

95

Chapter 6:
Controlling Your
Program's Flow

Since 2 is less than 3, a second pass through the loop
occurs.

During this second pass, the printf() prints a 2 in
the console window, then the value of i is bumped
to 3. Once again, the expression (i < 3) is
evaluated. Since 3 is not less than 3, we drop out of
the loop to the second printf().

The important thing to remember about do loops is
this: Since the expression is not evaluated until the
bottom of the loop, the body of the loop (the statement)
is always executed at least once. Since for and while
loops both check their expressions at the top of the
loop, it’s possible for either to drop out of the loop
before the body of the loop is executed.

Let’s move on to a completely different type of
statement, known as the switch.

The switch
The switch statement uses the value of an
expression to determine which of a series of
statements to execute. Here’s an example that should
make this concept a little clearer:

switch (theYear)
{
 case 1066:
 printf(“Battle of Hastings”);
 break;
 case 1492:
 printf(“Columbus sailed the ocean blue”
);

 break;
 case 1776:
 printf(“Declaration of Independence\n”
);

 printf(“A very important document!!!”);
 break;
 default:
 printf(“Don’t know what happened during
this year”);

}

The switch is constructed of a series of cases,
each based on a specific value of theYear. If
theYear has a value of 066, execution continues
with the statement following that case’s colon, in this
case, the line:

printf(“Battle of Hastings”);

Execution continues, line after line, until either the
bottom of the switch (the right curly-brace) or a
break statement is reached. In this case, the next
line is a break statement.

The break statement comes in handy when you
are working with switches and loops. The break
tells the computer to jump immediately to the next
statement after the end of the loop or switch.

Continuing with the example, if theYear has a
value of 492, the switch jumps to the lines:

96

Chapter 6:
Controlling Your
Program's Flow

printf(“Columbus sailed the ocean blue”);
break;

A value of 776 jumps to the lines:

printf(“Declaration of Independence\n”);
printf(“A very important document!!!”);
break;

Notice that this case has two statements before the
break. There is no limit to the number of statements
a case can have. One is OK, 653 is OK. You can
even have a case with no statements at all.

The original example also contains a default
case. If the switch can’t find a case that matches
the value of its expression, the switch looks for a
case labeled default. If the default is present,
its statements are executed. If no default is
present, the switch completes without executing
any of its statements.

Here’s the pattern the switch tries to match:

switch (expression)
{
 case constant:
 statements
 case constant:
 statements
 default:
 statements

}

Why would you want a case with no statements?
Here’s an example:

switch (myVar)

{

case 1:

case 2:

DoSomething();

break;

case 3:

DoSomethingElse();

}

In this example, if myVar has a value of 1 or 2, the
function DoSomething() is called. If myVar has
a value of 3, the function DoSomethingElse()
is called. If myVar has any other value, nothing
happens. Use a case with no statements when
you want two different cases to execute the same
statements.

97

Chapter 6:
Controlling Your
Program's Flow

Think about what happens with this example:

switch (myVar)

{

case 1:

DoSometimes();

case 2:

DoFrequently();

default:

DoAlways();

}

If myVar is 1, all three functions will get called.
If myVar is 2, DoFrequently() and
DoAlways() will get called. If myVar has any
other value, DoAlways() gets called by itself. This
is a good example of a switch without breaks.

At the heart of each switch is its expression. Most
switches are based on single variables but, as we
mentioned earlier, assignment statements make
perfectly acceptable expressions.

Each case is based on a constant. Numbers
(like 47 or -2,932) are valid constants. Variables,
such as myVar, are not. As you’ll see later, single-
byte characters (like ‘a’ or ‘\n’) are also valid
constants. Multiple-byte character strings (like
“Gummy-bear”) are not.

If your switch uses a default case, make
sure you use it as shown in the pattern above. Don’t
include the word case before the word default.

Breaks in Other Loops
The break statement has other uses besides the
switch statement. Here’s an example of a break
used in a while loop:

i=1;

while (i <= 9)
{
 PlayAnInning(i);
 if (ItIsRaining())
 break;
 i++;
}

This sample tries to play nine innings of baseball. As
long as the function ItIsRaining() returns with
a value of false, the game continues uninterrupted.
If ItsRaining() returns a value of true, the
break statement is executed and the program drops
out of the loop, interrupting the game.

The break statement allows you to construct loops
that depend on multiple factors. The termination
of the loop depends on the value of the expression
found at the top of the loop, as well as on any outside
factors that might trigger an unexpected break.

98

Chapter 6:
Controlling Your
Program's Flow

isOdd.xcode
This next program combines for and if statements
to tell you whether the number through 20 are odd
or even, and if they are an even multiple of 3. It also
introduces a brand new operator: the % operator.
Go into the Learn C Projects folder, into the 06.03 -
isOdd subfolder, and open the project isOdd.xcode.

Run isOdd.xcode. You should see something like the
console window shown in Figure 6.5. You should see
a line for each number from through 20. Each of
the numbers will be described as either odd or even.
Each of the multiples of 3 will have additional text
describing them as such. Here’s how the program
works: Figure 6.5 Running isOdd.

Stepping Through the Source Code
main.c starts off with the usual #include and
the beginning of main(). main() starts off by
declaring a counter variable named i.

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int i;

Our goal here is to step through each of the numbers
from to 20. For each number, we want to check to
see if the number is odd or even. We also want to
check whether the number is evenly divisible by 3.

99

Chapter 6:
Controlling Your
Program's Flow

Once we’ve analyzed a number, we’ll use printf()
to print a description of the number in the console
window.

As we mentioned in Chapter 4, the scheme that
defines the way a program works is called the
program’s algorithm. It’s a good idea to try to work
out the details of your program’s algorithm before
writing even one line of source code.

As you might expect, the next step is to set up a for
loop using i as a counter. i is initialized to . The
loop will keep running as long as the value of i is
less than or equal to 20. This is the same as saying
the loop will exit as soon as the value of i is found to
be greater than 20. Every time the loop reaches the
bottom, the third expression, i++, will be evaluated,
incrementing the value of i by . This is a classic for
loop.

 for (i = 1; i <= 20; i++)
 {

Now we’re inside the for loop. Our goal is to print
a single line for each number (i.e., one line each time
through the for loop). If you check back to Figure
6.4, you’ll notice that each line starts with the phrase:

The number x is

where x is the number being described. That’s the
purpose of this first printf():

 printf(“The number %d is “, i);

Notice that this printf() wasn’t part of an if
statement. We want this printf() to print its
message every time through the loop. The next
sequence of printf()s are a different story
altogether.

The next chunk of code determines whether i is
even or odd, then uses printf() to print the
appropriate word in the console window. Because the
last printf() didn’t end with a newline character
(‘\n’), the word “even” or “odd” will appear
immediately following:

The number x is

on the same line in the console window.

This next chunk of code introduces a brand new
operator. % is a binary operator that returns the
remainder when the left operand is divided by
the right operand. For example, i % 2 divides 2
into i and returns the remainder. If i is even, this
remainder will be 0. If i is odd, this remainder will
be .

100

Chapter 6:
Controlling Your
Program's Flow

 if ((i % 2) == 0)
 printf(“even”);
 else
 printf(“odd”);

In the expression i % 3, the remainder will be 0 if i
is evenly divisible by 3, and either or 2 otherwise.

if ((i % 3) == 0)
 printf(“ and is a multiple of 3”);

If i is evenly divisible by 3, we’ll add the phrase:

“ and is a multiple of 3”

to the end of the current line. Finally, we add a period
and a newline “.\n” to the end of the current line,
placing us at the beginning of the next line of the
console window.

 printf(“.\n”);

The loop ends with a curly brace. main() ends with
our normal return and curly brace.

 }

 return 0;
}

nextPrime.xcode
Our next program focuses on the mathematical
concept of prime numbers. A prime number is any
number whose only factors are and itself. For
example, 6 is not a prime number because its factors
are , 2, 3, and 6. The number 5 is prime because its
factors are limited to and 5. The number 2 isn’t
prime — its factors are , 2, 3, 4, 6, and 2.

Our next program will find the next prime number
greater than a specified number. For example, if we
set our starting point to 4, the program would find
the next prime, 7. We have the program set up to
check for the next prime after 9. Know what that is?

Go into the folder Learn C Projects, into the
subfolder 06.04 - nextPrime, and open the project
nextPrime.xcode. Run the project. You should see
something like the console window shown in Figure
6.6. As you can see, the next prime number after 9
is (drum roll, please...) 23. Here’s how the program
works.

101

Chapter 6:
Controlling Your
Program's Flow

Figure 6.6 Running nextPrime.

Stepping Through the Source Code
In addition to our #include of <stdio.h> and
<c.h> (the latter to include the definition of true
and false), we’ve added a third #include to our
stable. The new #include, <math.h>, gives us
access to a series of math functions, most notably the
function sqrt(). sqrt() takes a single parameter
and returns the square root of that parameter. You’ll
see how this works in a minute.

#include <stdio.h>
#include <math.h>
#include <c.h>

int main (int argc, const char * argv[])
{

We’re going to need a boatload of variables. They’re
all defined as ints:

 int startingPoint, candidate, last, i;
 int isPrime;

startingPoint is the number we want to
start off with. We’ll find the next prime after
startingPoint. candidate is the current
candidate we are considering. Is candidate
the lowest prime number greater than
startingPoint? By the time we are done, it will
be!

startingPoint = 19;

Since 2 is the lowest prime number, if
startingPoint is less than 2, we know that the
next prime is 2. By setting candidate to 2, our
work is done.

 if (startingPoint < 2)
 {
 candidate = 2;
 }

If startingPoint is 2, the next prime is 3 and
we’ll set candidate accordingly.

102

Chapter 6:
Controlling Your
Program's Flow

 else if (startingPoint == 2)
 {
 candidate = 3;
 }

If we got this far, we know that startingPoint
is greater than 2. Since 2 is the only even prime
number, and since we’ve already checked for
startingPoint being equal to 2, we can now
limit our search to odd numbers only. We’ll start
candidate at startingPoint, then make sure
that candidate is odd. If not, we’ll decrement
candidate. Why decrement instead of increment?
If you peek ahead a few lines, you’ll see we’re about
to enter a do loop, and that we bump candidate
to the next odd number at the top of the loop. By
decrementing candidate now, we’re preparing
for the bump at the top of the loop, which will take
candidate to the next odd number greater than
startingPoint.

 else
 {
 candidate = startingPoint;

 if (candidate % 2 == 0)
 candidate--;

This loop will continue stepping through consecutive
odd numbers until we find a prime number. We’ll
start isPrime off as true, then check the current
candidate to see if we can find a factor. If we do

find a factor, we’ll set isPrime to false, forcing us
to repeat the loop.

 do
 {
 isPrime = true;
 candidate += 2;

Now we’ll check to see if candidate is prime. This
means verifying that candidate has no factors
other than and candidate. To do this, we’ll
check the numbers from 3 to the square root of
candidate to see if any of them divide evenly into
candidate. If not, we know we’ve got ourselves a
prime!

 last = sqrt(candidate);

103

Chapter 6:
Controlling Your
Program's Flow

So why don’t we check from 2 up to candidate
- 1? Why start with 3? Since candidate will never
be even, we know that 2 will never be a factor. For the
same reason, we know that no even number will ever
be a factor.

Why stop at the square root of candidate? Good
question! To help understand this approach, consider
the factors of 12, other than 1 and 12. They are 2, 3, 4,
and 6. The square root of 12 is approximately 3.46.
Notice how this fits nicely in the middle of the list of
factors. Each of the factors less than the square root
will have a matching factor greater than the square
root. In this case, 2 matches with 6 (2*6=12) and 3
matches with 4 (3*4=12). This will always be true. If we
don’t find a factor by the time we hit the square root,
there won’t be a factor, and the candidate is prime.

Take a look at the top of the for loop. We start i at
3. Each time we hit the top of the loop (including the
first time through the loop) we’ll check to make sure
we haven’t passed the square root of candidate,
and that isPrime is still true. If isPrime is
false, we can stop searching for a factor, since
we’ve just found one! Finally, each time we complete
the loop, we bump i to the next odd number.

 for (i = 3; (i <= last) && isPrime; i += 2)
 {

Each time through the loop, we’ll check to see if i
divides evenly into candidate. If so, we know it is

a factor and we can set isPrime to false.

 if ((candidate % i) == 0)
 isPrime = false;
 }
 } while (! isPrime);
 }

Once we drop out of the do loop, we use printf() to
print both the starting point and the first prime number
greater than the starting point.

 printf(“The next prime after %d is %d.
 Happy?\n”, startingPoint, candidate);
 return 0;
}

If you are interested in prime numbers, play around
with this program. See if you can modify the code
to print all the prime numbers from to 00. How
about the first 00 prime numbers?

104

Chapter 6:
Controlling Your
Program's Flow

What’s Next?
Congratulations! You’ve made it through some tough
concepts. You’ve learned about the C statements
that allow you to control your program’s flow. You’ve
learned about C expressions and the concept of
true and false. You’ve also learned about the
logical operators based on the values true and
false. You’ve learned about the if, if-else,
for, while, do, switch, and break statements.
In short, you’ve learned a lot!

Our next chapter introduces the concept of pointers.

A pointer to a variable is really the address of the
variable in memory. If you pass the value of a variable
to a function, the function can make use of the
variable’s value, but can’t change the variable’s value.
If you pass the address of the variable to the function,
the function can also change the value of the variable.
Chapter 7 will tell you why.

Chapter 7 will also discuss function parameters in
detail. As usual, plenty of code fragments and sample
applications will be presented to keep you busy. See
you there.

105

Chapter 6:
Controlling Your
Program's Flow

Exercises

) What’s wrong with each of the following code
fragments?

 a. if i
 i++;

 b. for (i=0; i<20; i++)
 i--;

 c. while ()
 i++;

 d. do (i++)
 until (i == 20);

 e. switch (i)
 {
 case “hello”:
 case “goodbye”:
 printf(“Greetings.”);
 break;
 case default:
 printf(“Boring.”);
 }

 f. if (i < 20)
 if (i == 20)
 printf(“Lonely...”);

 g. while (done = TRUE)
 done = ! done;

 h. for (i=0; i<20; i*20)
 printf(“Modification...”);

2) Modify nextPrime.c to compute the prime
numbers from to 00.

3) Modify nextPrime.c to compute the first 00
prime numbers.

Y
Chapter 7 Pointers and Parameters

106

ou’ve come a long way. You’ve mastered variable
basics, operators, and statements. You’re about
to add some powerful, new concepts to your
programming toolbox.

For starters, we’ll introduce the concept of pointers,
also known as variable addresses. From now on,
you’ll use pointers in almost every C program you
write. Pointers allow you to implement complex
data structures, opening up a world of programming
possibilities.

What is a Pointer?
In programming, pointers are references to other
things. When someone calls your name to get your
attention, they’re using your name as a pointer. Your
name is one way people refer to you.

Your name and address can combine to serve as
a pointer, telling the mail carrier where to deliver
the new Sears catalog. Your address distinguishes
your house from all the other houses in your
neighborhood and your name distinguishes you from
the rest of the people living in your house.

When you declare a variable in C, memory is allocated
to the variable. This memory has an address. C pointers
are special variables, specifically designed to hold one
of these addresses. Later in the chapter, you’ll learn how
to create a pointer, how to make it point to a specific
variable, and how to use the pointer to change the
variable’s value.

Why Use Pointers?
Pointers can be extremely useful, allowing you to
access your data in ways that ordinary variables just

107

Chapter 7:
Pointers and
Parameters

don’t allow. Here’s a real-world example of “pointer
flexibility.”

When you go to the library in search of a specific
title, chances are you start your search in a card
catalog. Card catalogs contain thousands of index
cards, one for every book in the library. Each index
card contains information about a specific book,
including such information as the author’s name, the
book’s title, and the copyright date.

Most libraries have three card catalogs. Each lists all
the books, sorted alphabetically by subject, author,
or by title. In the subject card catalog, a book can be
listed more than once. For example, a book about
Thomas Jefferson might be listed under “Presidents,
U.S.,” “Architects,” or even under “Inventors”
(Jefferson was quite an inventor).

Figure 7. shows a catalog card for Albert Einstein’s
famous book on relativity, called The Meaning of
Relativity. The card was listed in the subject catalog
under the subject “RELATIVITY (PHYSICS).” Take
a minute to look the card over. Pay special attention
to the catalog information located on the left side of
the card. The catalog number for this book is 530..
This number tells you exactly where to find the book
among all the other books on the shelves. The books
are ordered numerically, so you’ll find this book in
the 500 shelves, between 530 and 53.

Catalog
Information

530.1
E35mg
1950

162 p.

I. Relativity (Physics) I. Title

Einstein, Albert, 1879-1955
 The Meaning of Relativity; 3rd ed.
rev. including the generalized theory
of gravitation. Princeton Univ. Press,
c1950.

RELATIVITY (PHYSICS)

Figure 7. Catalog card for a rather famous book. Note
the catalog information on the left side of the card.

In this example, the library bookshelves are like your
computer’s memory, with the books acting as data.
The catalog number is the address of your data (a
book) in memory (on the shelf).

As you might have guessed, the catalog number acts
as a pointer. The card catalogs use these pointers
to rearrange all the books in the library, without
moving a single book. Think about it. In the subject
card catalog, all the books are arranged by subject.
Physically, the book arrangements have nothing to
do with subject. Physically, the books are arranged
numerically, by catalog number. By adding a layer of

108

Chapter 7:
Pointers and
Parameters

pointers between you and the books, the librarians
achieve an extra layer of flexibility.

In the same way, the author and title card catalogs
use a layer of pointers to arrange all the books by
author and by title. By using pointers, all the books
in the library are arranged four different ways
without ever leaving the shelves. The books are
arranged physically (sorted by catalog number) and
logically (sorted in one catalog by author, in another
by subject, and in another by title). Without the
support of a layer of pointers, these logical book
arrangements would be impossible.

Adding a layer of pointers is also known as “adding
a level of indirection.” The number of levels of
indirection is the number of pointers you have to use
to get to your library book (or to your data).

Checking Out of the Library
So far, we’ve talked about pointers in terms of library
catalog numbers. The use of pointers in your C
programs is not much different from this model.
Each card catalog number points out the location
of a book on the library shelf. In the same way, each
pointer in your program will point out the location of
a piece of data in computer memory.

If you wrote a program to keep track of your
compact-disc collection, you might maintain a list of
pointers, each one of which might point to a block

of data that describes a single CD. Each block of data
might contain such info as the name of the artist, the
name of the album, the year of release, and a category
(jazz, rock, blues). If you got more ambitious, you
could create several pointer lists. One list might sort
your CDs alphabetically by artist name. Another
might sort them chronologically by year of release.
Yet another list might sort your CDs by musical
category. You get the picture.

There’s a lot you can do with pointers. By mastering
the techniques presented in these next few chapters,
you’ll be able to create programs that take full
advantage of pointers.

Our goal for this chapter is to master pointer basics.
We’ll talk about C pointers and C pointer operations.
You’ll learn how to create a pointer and how to make
the pointer point to a variable. You’ll also learn how
to use a pointer to change the value of the variable
the pointer points to.

109

Chapter 7:
Pointers and
Parameters

Pointer Basics
Pointers are variable addresses. Instead of an address
such as:

1313 Mockingbird Lane
Raven Heights, California 90263

a variable’s address refers to a memory location
within your computer. As we discussed in Chapter
3, your computer’s memory, also known as random
access memory, or RAM, consists of a sequence of
bytes. One megabyte of RAM has exactly 220 (or
,048,576) bytes of memory. Eight megabytes of
RAM has exactly 8 x 220 = 223 = 8,388,608 bytes of
memory. One gigabyte of RAM has exactly 230 bytes
= ,024 megabytes = ,073,74,824 bytes of memory.
Whew!

Every one of those bytes has its own unique address.
Computer addresses typically start with 0 and
continue up, one at a time, until they reach the
highest address. The first byte has an address of 0,
the next byte has an address of , and so on. Figure
7.2 shows the addressing scheme for a computer with
a gigabyte of RAM. A gigabyte is ,024 megabytes.
Notice that the addresses run from 0 (the lowest
address) all the way up to ,073,74,823 (the highest
address). The same scheme would hold true for ten
gigabytes, or even one terabyte (,024 gigabytes).

1,073,741,823

2
1
0

Figure 7.2 A gigabyte worth of bytes.

Variable Addresses
When you run a program, one of the first things the
computer does is allocate memory for your program’s
variables. When you declare an int in your code,
like this:

int myVar;

the compiler reserves memory for the exclusive use
of myVar.

As mentioned earlier in the book, the amount of
memory allocated for an int depends on your
development environment. Xcode defaults to using
4-byte ints.

110

Chapter 7:
Pointers and
Parameters

Each of myVar’s bytes has a specific address. Figure
7.3 shows a one gigabyte chunk of memory with 4
bytes allocated to the variable myVar. In this picture,
the 4 bytes allocated to myVar have the addresses
836, 837, 838, and 839.

1,073,741,823
1,073,741,822

1
0

837
836

839
838

Figure 7.3 Four bytes allocated for the int named
myVar.

By convention, a variable’s address is said to be the
address of its first byte (the first byte is the byte with
the lowest-numbered address). If a variable uses
memory locations 836 through 839 (as myVar does),
its address is 836 and its length is 4 bytes.

When more than 1 byte is allocated to a variable, the
bytes will always be consecutive (next to each other
in memory). You will never see an int whose byte
addresses are 508, 509, 510, and 695. A variable’s bytes
are like family—they stick together!

As we showed earlier, a variable’s address is a lot like
the catalog number on a library catalog card. Both
act as pointers, one to a book on the library shelf, and
the other to a variable. From now on, when we use
the term pointer with respect to a variable, we are
referring to the variable’s address.

Now that you understand what a pointer is, your
next goal is to learn how to use pointers in your
programs. The next few sections will teach you some
valuable pointer-programming skills. You’ll learn
how to create a pointer to a variable. You’ll also
learn how to use that pointer to access the variable it
points to.

The C language provides you with a few key tools to
help you. These tools come in the form of two special
operators: & and *.

The & Operator
The & operator (also called the address-of operator)
pairs with a variable name to produce the variable’s
address. The expression:

&myVar

111

Chapter 7:
Pointers and
Parameters

refers to myVar’s address in memory. If myVar
owned memory locations 836 through 839 (as in
Figure 7.3), the expression:

&myVar

would have a value of 836. The expression &myVar is
a pointer to the variable myVar.

As you start programming with pointers, you’ll
find yourself using the & operator frequently.
An expression like &myVar is a common way to
represent a pointer. Another way to represent a
pointer is with a pointer variable. A pointer variable
is a variable specifically designed to hold the address
of another variable.

Declaring a Pointer Variable
C supports a special notation for declaring pointer
variables. This line:

int *myPointer;

declares a variable called myPointer. Notice that
the * is not part of the variable’s name. Instead, it
tells the compiler that the associated variable is a
pointer, specifically designed to hold the address
of an int. If there were a data type called bluto,
you could declare a variable designed to point to a
bluto like this:

bluto *blutoPointer;

For now, we’ll limit ourselves to pointers that point to
ints. Look at this code:

int *myPointer, myVar;

myPointer = &myVar;

The assignment statement puts myVar’s address in
the variable myPointer. If myVar’s address is 836,
this code will leave myPointer with a value of 836.
Note that this code has absolutely no effect on the
value of myVar.

There will be times in your coding when you have a
pointer to a variable, but do not have access to the
variable itself. This happens a lot. You can actually
use the pointer to manipulate the value of the
variable it points to. Observe:

int *myPointer, myVar;

myPointer = &myVar;
*myPointer = 27;

As before, the first assignment statement places
myVar’s address in the variable myPointer. The
second assignment introduces the * operator. The *

112

Chapter 7:
Pointers and
Parameters

operator (called the star operator) converts a pointer
variable to the item the pointer points to.

The * that appears in the declaration statement isn’t
really an operator. It’s only there to designate the
variable myPointer as a pointer.

If myPointer points to myVar, as is the case in
our example, *myPointer refers to the variable
myVar. In this case, the line:

*myPointer = 27;

is the same as saying:

myVar = 27;

Confused? These memory pictures should help.
Figure 7.4 joins our program in progress, just
after the variables myVar and myPointer were
declared:

int *myPointer, myVar;

1,073,741,823
1,073,741,822

32,105
32,104

32,107
32,106

int *myPointer;

int myVar;

1
0

837
836

839
838

Figure 7.4 Memory allocated for myVar and
myPointer.

Notice that 4 bytes were allocated for the variable
myVar and an additional 4 bytes were allocated for
myPointer. Why? Because myVar is an int and
myPointer is a pointer, designed to hold a 4-byte
address.

Why a 4-byte address? Good question! 4 bytes is
equal to 32 bits. Since memory addresses start at 0
and can never be negative, a 4-byte memory address

113

Chapter 7:
Pointers and
Parameters

can range from 0 up to 232 - = 4,294,967,295.
That means that a 32-bit computer can address
a maximum of 4 gigabytes (4096 megabytes) of
memory.

While 4 gigs of memory might seem more than
adequate for most folks, there are already a number
of applications that require more RAM than this.
After all, it was just a few years ago that 32 megs of
RAM was the standard. Soon, we will look back and
wonder just how we managed to live with that pesky
4 gig limit!

So how do we address more than 4 gigabytes in a 32-
bit computer? The short answer is, we don’t. When
Apple released the G5 back in 2003, they introduced
their first 64-bit computer. Instead of a 4-byte
address, the G5 supports an 8-byte address. An 8-
byte address can hold values from 0 to 264 - . That is
one giant number.

The point here is to be aware that the size of an
address can change and the number of bytes used to
represent an int can change.

Older computers (like the Apple IIe, for example)
represented an address using 2 bytes (16-bits) of
memory, yielding a range of addresses from 0 to 216 - 1
= 65,535. Imagine having to fit your operating system,
as well as all your applications in a mere 64K of RAM
(1K = 1024 bytes).

When the Mac first appeared, it came with 128K of
RAM and used 24-bit memory addresses, yielding a
range of addresses from 0 to 224 - 1 = 16,777,215 (also
known as 16 megabytes). In those days, no one could
imagine a computer that actually included 16 entire
megabytes of memory!

Of course, these days we are much smarter. We
absolutely know for a fact that we’ll never exceed the
need for 64-bit addresses. I mean, there’s no way that
a computer could ever make use of 4 gigabytes of
RAM, right? Hmmm... Better not count on that. In fact,
if you are a betting person, I’d wager that someday
we’ll see 16-byte addresses. Really!

Once memory is allocated for myVar and
myPointer, we move on to the statement:

myPointer = &myVar;

The 4-byte address of the variable myVar is written
to the 4 bytes allocated to myPointer. In our
example, myVar’s address is 836. Figure 7.5 shows
the value 836 stored in myPointer’s 4 bytes. Now
myPointer is said to “point-to” myVar.

114

Chapter 7:
Pointers and
Parameters

1,073,741,823
1,073,741,822

32,105
32,104

32,107
32,106

int *myPointer;

int myVar;

1
0

837
836

839
838

8
3
6

Figure 7.5 The address of myVar is assigned to
myPointer.

OK, we’re almost there. The next line of our example
writes the value 27 to the location pointed to by
myPointer.

*myPointer = 27;

Without the * operator, the computer would

place the value 27 in the memory allocated to
myPointer. The * operator dereferences
myPointer. Dereferencing a pointer turns the
pointer into the variable it points to. Figure 7.6 shows
the end results.

1,073,741,823
1,073,741,822

32,105
32,104

32,107
32,106

int *myPointer;

int myVar;

1
0

837
836

839
838

8
3
6

2
7

Figure 7.6 Finally, the value 27 is assigned to
*myPointer.

115

Chapter 7:
Pointers and
Parameters

If the concept of pointers seems alien to you, don’t
worry. You are not alone. Programming with pointers
is one of the most difficult topics you’ll ever take on.
Just keep reading, and make sure you follow each of
the examples line by line. By the end of the chapter,
you’ll be a pointer expert!

Function Parameters
One of the most important uses of pointers (and
perhaps the easiest to understand) lies in the
implementation of function parameters. In this
section, we’ll focus on parameters and, at the same
time, have a chance to check out pointers in action.

What Are Function Parameters?
A function parameter is your chance to share a
variable between a calling function and the called
function.

Suppose you wanted to write a function called
AddTwo() that took two numbers, added them
together, and returned the sum of the two numbers.
How would you get the two original numbers
into AddTwo()? How would you get the sum of
the two numbers back to the function that called
AddTwo()?

As you might have guessed, the answer to both
questions lies in the use of parameters. Before you
can learn how to use parameters, however, you’ll
have to first understand the concept of scope.

Variable Scope
In C, every variable is said to have a scope, or range.
A variable’s scope defines where in the program you
have access to a variable. In other words, if a variable
is declared inside one function, can another function
refer to that same variable?

C defines variable scope as follows:

116

Chapter 7:
Pointers and
Parameters

4 A variable declared inside a function is local to
that function and may only be referenced inside
that function.

This statement is important. It means you can’t
declare a variable inside one function, then refer to
that same value inside another function. Here’s an
example that will never compile:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int numDots;

 numDots = 500;

 DrawDots();

 return 0;
}

void DrawDots(void)
{
 int i;

 for (i = 1; i <= numDots; i++)
 printf(“.”);
}

The error in this code occurs when the function
DrawDots() tries to reference the variable
numDots. According to the rules of scope,
DrawDots() doesn’t even know about the variable

numDots. If you tried to compile this program the
compiler would complain that DrawDots() tried to
use the variable numDots without declaring it.

The problem you are faced with is getting the value
of numDots to the function DrawDots() so
DrawDots() knows how many “dots” to draw. The
answer to this problem is function parameters.

DrawDots() is another example of the value of
writing functions. We’ve taken the code needed to
perform a specific function (in this case, draw some
dots) and embedded it in a function. Now, instead of
having to duplicate the code inside DrawDots()
every time we want to draw some dots in our
program, all we’d need is a single line of code: a call to
the function DrawDots().

How Function Parameters Work
Function parameters are just like variables. Instead
of being declared at the beginning of a function,
function parameters are declared between the
parentheses on the function’s title line, like this:

void DrawDots(int numDots)
{
 /* function’s body goes here */
}

When you call a function, you just match up the
parameters, making sure you pass the function what

117

Chapter 7:
Pointers and
Parameters

it expects. To call the version of DrawDots() we
just defined, make sure you place an int between
the parentheses. The call to DrawDots() inside
main():

int main(void)
{
 DrawDots(30);

 return 0;
}

passes the value 30 into the function DrawDots().
When DrawDots() starts executing, it sets its
parameter to the passed-in value. In this case,
DrawDots() has one parameter, an int named
numDots. When the call:

DrawDots(30);

executes, the function DrawDots() sets its
parameter, numDots, to a value of 30. To make
things a little clearer, here’s a revised version of our
example:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 DrawDots(30);

 return 0;
}

void DrawDots(int numDots)
{
 int i;

 for (i = 1; i <= numDots; i++)
 printf(“.”);
}

This version of main() calls DrawDots(),
passing as a parameter the constant 30.
DrawDots() receives the value 30 in its int
parameter, numDots. This means that the function
DrawDots() starts execution with a variable
named numDots having a value of 30.

Inside DrawDots(), the for loop behaves as you
might expect, drawing 30 periods in the console
window. Figure 7.7 shows a picture of this program
in action. You can run this example yourself. The
project file, drawDots.xcode, is located in the
Learn C Projects folder in a subfolder named 07.0
- drawDots.

118

Chapter 7:
Pointers and
Parameters

Figure 7.7 drawDots in action.

Parameters are Temporary
When you pass a value from a calling function to a
called function, you are creating a temporary variable
inside the called function. Once the called function
exits (returns to the calling function), that variable
ceases to exist.

In our example, we passed a value of 30 into
DrawDots() as a parameter. The value came to rest
in the parameter variable named numDots. Once
DrawDots() exited, numDots ceased to exist.

Remember, a variable declared inside a function can
only be referenced by that function.

It is perfectly acceptable for two functions to use
the same variable names for completely different
purposes. It’s fairly standard, for example, to use
a variable name like i as a counter in a for loop.
What happens when, in the middle of just such a
for loop, you call a function that also uses a variable
named i? Here’s an example:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int i;

 for (i=1; i<=10; i++)
 {
 DrawDots(30);
 printf(“\n”);
 }

 return 0;
}

void DrawDots(int numDots)
{
 int i;

 for (i = 1; i <= numDots; i++)
 printf(“.”);
}

This code prints a series of 0 rows of dots, with 30
dots in each row. After each call to DrawDots(), a
carriage return (“\n”) is printed, moving the cursor

119

Chapter 7:
Pointers and
Parameters

in position to begin the next row of dots.

Notice that main() and DrawDots() each feature
a variable named i. main() uses the variable i as a
counter, tracking the number of rows of dots printed.
DrawDots() also uses i as a counter, tracking
the number of dots in the row it is printing. Won’t
DrawDots()’s copy of i mess up main()’s copy of
i? No!

When main() starts executing, memory gets
allocated for its copy of i. When main() calls
DrawDots(), additional memory gets allocated for
DrawDots()’ copy of i. When DrawDots() exits,
the memory for its copy of i is deallocated, freed
up so it can be used again for some other variable. A
variable declared within a specific function is known
as a local variable. DrawDots() has a single local
variable, the variable i.

What Does All This Have to Do with
Pointers?
OK. Now we’re getting to the crux of the whole
matter. What do parameters have to do with
pointers? To answer this question, you have to
understand the two different methods of parameter
passing.

Parameters are passed from function to function
either by value or by address. Passing a parameter by
value passes only the value of a variable or literal on
to the called function. Take a look at this code:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int numDots;

 numDots = 30;

 DrawDots(numDots);

 return 0;
}

void DrawDots(int numDots)
{
 int i;

 for (i = 1; i <= numDots; i++)
 printf(“.”);
}

Here’s what happens when main() calls

120

Chapter 7:
Pointers and
Parameters

DrawDots(). On the calling side, the expression
passed as a parameter to DrawDots() is resolved
to a single value. In this case, the expression is simply
the variable numDots. The value of the expression is
the value of numDots, which is 30.

On the receiving side, when DrawDots() gets
called, memory is allocated for its parameters as well
as for its local variables. This means that memory
is allocated for DrawDots()’s copy of numDots,
as well as for its copy of i. The value passed in to
DrawDots() from main() (in this case, 30) is
copied into the memory allocated to DrawDots()’s
copy of numDots.

It is important to understand that whatever main()
passes as a parameter to DrawDots() is copied into
DrawDots()’s local copy of the parameter. Think
of DrawDots()’s copy of numDots as just another
local variable that will disappear when DrawDots()
exits. DrawDots() can do whatever it likes to its
copy of the parameter. Since it is just a local copy, any
changes will have absolutely no affect on main()’s
copy of the parameter.

Since passing parameters by value is a one-way
operation, there’s no way to get data back from
the called function. Why would you ever want to?
Several reasons. You might write a function that
takes an employee number as a parameter. You might
want that function to return the employee’s salary in
another parameter. How about a function that turns
yards into meters? You could pass the number of

yards as a value parameter, but how would you get
back the number of meters?

Passing a parameter by address (instead of by
value) solves this problem. If you pass the address
of a variable, the receiving function can use the *
operator to change the value of the original variable.

Here’s an example:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int square;

 SquareIt(5, &square);

 printf(“5 squared is %d.\n”, square);

 return 0;
}

void SquareIt(int number, int *squarePtr)
{
 *squarePtr = number * number;
}

In this example, main() calls the function
SquareIt(). SquareIt() takes two parameters.
As in our last example, both parameters are declared
between the parentheses on the function’s title
line. Notice that we used a comma to separate the
parameter declarations.

121

Chapter 7:
Pointers and
Parameters

The first of SquareIt()’s two parameters is an
int. The second parameter is a pointer to an int.
SquareIt() squares the value passed in the first
parameter, using the pointer in the second parameter
to return the squared value.

If it’s been ten or more years since your last math
class, squaring a number is the same as multiplying
the number by itself. The square of 4 is 16 and the
square of 5 is 25.

Here’s main()’s call of SquareIt():

SquareIt(5, &square);

Here’s the function prototype of SquareIt():

void SquareIt(int number, int *squarePtr);

When SquareIt() gets called, memory is
allocated for an int (number) and for a pointer to
an int (squarePtr).

Once the local memory is allocated, the value 5 is
copied into the local parameter number, and the
address of square is copied into squarePtr
(Remember, the & operator produces the address of a
variable).

Inside the function SquareIt(), any reference to:

*squarePtr

is just like a reference to square. The assignment
statement:

*squarePtr = number * number;

assigns the value 25 (since number has a value of 5)
to the variable pointed to by squarePtr. This has
the effect of assigning the value 25 to square. When
SquareIt() returns control to main(), the value
of square has been changed, as evidenced by the
screen shot in Figure 7.8. If you’d like to give this
code a try, you’ll find it in the Learn C Projects folder,
inside the 07.02 - squareIt subfolder.

122

Chapter 7:
Pointers and
Parameters

Figure 7.8 squareIt in action.

We’ll see lots more pointer-wielding examples
throughout the rest of the book.

Global Variables and Function
Returns
The combination of pointers and parameters gives
us one way to share variables between different
functions. This section demonstrates two more
techniques for doing the same.

Global variables are variables that are accessible from
inside every function in your program. By declaring
a global variable, two separate functions can access
the same variable without passing parameters. We’ll
show you how to declare a global variable, then talk
about when and when not to use global variables in
your programs.

Another topic we’ll discuss later in the chapter is
a property common to all functions. All functions
written in C have the ability to return a value to the
function that calls them. You set this return value
inside the function itself. You can use a function’s
return value in place of a parameter, use it to pass
additional information to the calling function, or not
use it at all. We’ll show you how to add a return value
to your functions.

Global Variables
Earlier in the chapter, you learned how to use
parameters to share variables between two functions.
Passing parameters between functions is great. You
can call a function, pass it some data to work on, and
when the function’s done, it can pass you back the
results.

123

Chapter 7:
Pointers and
Parameters

Global variables provide an alternative to parameters.
Global variables are just like regular variables, with
one exception. Global variables are immune to C’s
scope rules. They can be referenced inside each
of your program’s functions. One function might
initialize the global variable, another might change its
value, and another function might print the value of
the global variable in the console window.

As you design your programs, you’ll have to make
some basic decisions about data sharing between
functions. If you’ll be sharing a variable among a
number of functions, you might want to consider
making the variable a global. Globals are especially
useful when you want to share a variable between
two functions that are several calls apart.

Several calls apart? At times, you’ll find yourself
passing a parameter to a function, not because
that function needs the parameter, but because
the function calls another function that needs the
parameter. Look at this code:

#include <stdio.h>

void PassAlong(int myVar);
void PrintMyVar(int myVar);

int main(void)
{
 int myVar;

 myVar = 10;

 PassAlong(myVar);

 return 0;
}

void PassAlong(int myVar)
{
 PrintMyVar(myVar);
}

void PrintMyVar(int myVar)
{
 printf(“myVar = %d”, myVar);
}

Notice that main() passes myVar to the
function PassAlong(). PassAlong() doesn’t
actually make use of myVar. Instead, it just passes
myVar along to the function PrintMyVar().
PrintMyVar() prints myVar, then returns.

If myVar were a global, you could have avoided some
parameter passing. main() and PrintMyVar()
could have shared myVar without the use of
parameters. When should you use parameters?
When should you use globals? There’s no easy
answer. As you write more code, you’ll develop
your own coding style and, with it, your own sense
of when to use globals versus parameters. For the
moment, let’s take a look at the proper way to add
globals to your programs.

124

Chapter 7:
Pointers and
Parameters

Adding Globals to Your Programs
Adding globals to your programs is easy. Just declare
a variable at the beginning of your source code before
the start of any of your functions. Here’s the example
we showed you earlier, using globals in place of
parameters:

#include <stdio.h>

void PassAlong(void);
void PrintMyVar(void);

int gMyVar;

int main (int argc, const char * argv[])
{
 gMyVar = 10;

 PassAlong();

 return 0;
}

void PassAlong(void)
{
 PrintMyVar();
}

void PrintMyVar(void)
{
 printf(“gMyVar = %d”, gMyVar);
}

This example starts with a variable declaration, right
at the top of the program. Because gMyVar was

declared at the top of the program, gMyVar becomes
a global variable, accessible to each of the program’s
functions. Notice that none of the functions in
this version use parameters. As a reminder, when
a function is declared without parameters, use the
keyword void in place of a parameter list.

Did you notice that letter g at the beginning of the
global’s name? Many C programmers start each of
their global variables with the letter g (for global).
Doing this will distinguish your local variables from
your global variables and will make your code much
easier to read.

When to Use Globals
In general, you should try to minimize your use
of globals. On one hand, global variables make
programming easier, because you can access a global
anywhere. With parameters, you have to pass the
parameter from function to function, until it gets to
where it will be used.

On the other hand, globals are expensive, memory-
wise. Since the memory available to your program
is finite, you should try to be memory conscious
whenever possible. What makes global variables
expensive where memory is concerned? Whenever
a function is called, memory for the function’s
variables is allocated on a temporary basis. When the
function exits, the memory allocated to the function
is freed up (put back into the pool of available

125

Chapter 7:
Pointers and
Parameters

memory). Global variables, on the other hand, are
around for the life of your program. Memory for
each global is allocated when the program first starts
running and isn’t freed up until the program exits.

Try to minimize your use of globals, but don’t be a
miser. If using a global will make your life easier, go
ahead and use it.

Function Returns
Before we get to our source code examples, there’s
one more subject to cover. In addition to passing a
parameter and using a global variable, there’s one
more way to share data between two functions. Every
function returns a value to the function that called it.
You can use this return value to pass data back from
a called function.

So far, all of our examples have ignored function
return values. The return value only comes into play
when you call a function in an expression, like this:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int sum;

 sum = AddTheseNumbers(5, 6);

 printf(“The sum is %d.”, sum);

 return 0;
}

int AddTheseNumbers(int num1, int num2)
{
 return(num1 + num2);
}

There are a few things worth noting in this
example. First, take a look at the function specifier
for AddTheseNumbers(). So far in this
book, every single function other than main()
has been declared using the keyword void.
AddTheseNumbers(), like main(), starts with
the keyword int. This keyword tells you the type
returned by this function. A function declared with
the void keyword doesn’t return a value. A function
declared with the int keyword returns a value of
type int.

A function returns a value by using the return
keyword, followed by an expression that represents
the value you want returned. For example, take a look
at this line of code from AddTheseNumbers():

 return(num1 + num2);

This line of code adds the two variables num1 and
num2 together, then returns the sum. To understand
what that means, take a look at this line of code from
main() that calls AddTheseNumbers():

 sum = AddTheseNumbers(5, 6);

126

Chapter 7:
Pointers and
Parameters

This line of code first calls AddTheseNumbers(),
passing in values of 5 and 6 as parameters.
AddTheseNumbers() adds these numbers
together and returns the value , which is then
assigned to the variable sum.

When you use a function inside an expression, the
computer makes the function call, then substitutes
the function’s return value for the function when it
evaluates the rest of the expression.

There are several ways to use return. To
immediately exit a function, without establishing a
return value, use the statement:

return;

or

return();

The parentheses in a return statement are optional.
You’d use the plain return, without an expression,
to return from a function of type void. You might
use this immediate return in case of an error, like
this:

if (OutOfMemory())
 return;

What you’ll want to remember about this form of
return is that it does not establish the return value
of the function. This works fine if your function is
declared void:

void MyVoidFunction(int myParam);

but won’t cut it if your function is declared to return
a value:

int AddTheseNumbers(int num1, int num2)

If you forget to specify a return value, some compilers
will say nothing, some will print warnings, and others
will report errors.

AddTheseNumbers() is declared to return a value
of type int. Here are two different versions of the
AddTheseNumbers() return statement:

return(num1 + num2);

and

return num1 + num2;

Notice that the second version did not include any

127

Chapter 7:
Pointers and
Parameters

parentheses. Since return is a keyword and not a
function call, either of these forms is fine.

You can find a version of this program on your hard
drive. Look in the folder Learn C Projects, in the
subfolder 07.03 - addThese. Figure 7.9 shows the
output of this program.

Figure 7.9 addThese in action.

Danger! Avoid Uninitialized Return
Values!
Before we leave the topic of function return values,
there’s one pitfall worth mentioning. If you’re going
to use a function in an expression, make sure the
function provides a return value. For example, this
code will produce unpredictable results:

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int sum;

 sum = AddTheseNumbers(5, 6);

 printf(“The sum is %d.”, sum);

 return 0;
}

int AddTheseNumbers(int num1, int num2)
{
 return; /* Yikes! We forgot to
 set the return value */
}

When AddTheseNumbers() returns, what will
its value be? No one knows! When I ran the above
example on my computer, Xcode reported a warning
(as it should), then ran the program, generating a
sum of 724. Unpredictable results! Don’t forget to
set a return value if you intend to use a function in an
expression.

To Return or Not to Return
Should you use a return value or a passed-by-address
parameter? Which is correct? This is basically a
question of style. Either solution will get the job
done, so feel free to use whichever works best for
you. Just remember that a function can have only one

128

Chapter 7:
Pointers and
Parameters

return value but an unlimited number of parameters.
If you need to get more than one piece of data
back to the calling function, your best bet is to use
parameters.

The function AddTheseNumbers() was a natural
fit for the return statement. It took in a pair of
numbers (the input parameters), and needed to
return the sum of those numbers. Since it only
needed to return a single value, the return
statement worked perfectly.

Another nice thing about using the return
statement, is that it frequently allows us to avoid
declaring an extra variable. In addThese, we
declared sum to receive the value returned by
AddTheseNumbers(). Since all we did with sum
was print its value, we could have accomplished the
same thing with this version of main():

int main (int argc, const char * argv[])
{
 printf(“The sum is %d.”, AddTheseNumbers(5,
6));

 return 0;
}

See the difference? We included the
call to AddTheseNumbers() in the
printf(), bypassing sum entirely. When
AddTheseNumbers() returns its int, that value
is passed on to printf().

More Sample Programs
Are you ready for some more code? The next few
sample programs make use of pointers, function
parameters, global variables, and function returns.
Fire up your Mac, crank up your iPod, and break out
the pizza. Let’s code!

listPrimes.xcode
Our next sample program is an updated version of
Chapter 6’s prime number program, nextPrime,
which found the next prime number following
a specified number. The example we presented
reported that the next prime number after 9 was 23.

This program, called listPrimes, uses a function
named IsItPrime() and lists all the prime
numbers between and 50. Open up the project
listPrimes.xcode. You’ll find it in the Learn C Projects
folder, inside the subfolder named 07.04 - listPrimes.
Run listPrimes, then compare your results with
the console window shown in Figure 7.0.

129

Chapter 7:
Pointers and
Parameters

Figure 7.0 listPrimes in action.

Let’s take a look at the source code...

Stepping Through the Source Code
listPrimes.c consists of two functions: main()
and IsItPrime(). IsItPrime() takes a single
parameter, an int named candidate, which is
passed by value. IsItPrime() returns a value of
true if candidate is a prime number and a value
of false otherwise.

listPrimes.c starts off with three #includes.
stdio.h gives us access to the function prototype
of printf(), c.h gives us the definitions of true
and false, and math.h gives us access to the
function prototype for sqrt().

#include <stdio.h>
#include <c.h>
#include <math.h>

Next comes the function prototype for
IsItPrime(). The compiler will use this
function prototype to make sure that all calls to
IsItPrime() pass the right number of parameters
(in this case,) and that the parameters are of the
correct type (in this case, a single int).

int IsItPrime(int candidate);

main() defines a single variable, an int named
i. We’ll use i as a counter to step through the
integers from to 50. We’ll pass each number to
IsItPrime() and, if the result is true, we’ll
report the number as prime.

int main (int argc, const char * argv[])
{
 int i;

 for (i = 1; i <= 50; i++)
 {
 if (IsItPrime(i))
 printf(“%d is a prime number.\n”,
i);

 }

 return 0;
}

130

Chapter 7:
Pointers and
Parameters

As usual, main() ends with a return statement.
By convention, returning a value of 0 tells the
outside world that everything ran just honky-dory.
If something goes wrong (if we ran out of memory
perhaps) the same convention calls for us to return
a negative number from main(). Some operating
systems will make use of this return value, others
won’t. It doesn’t cost you anything to follow the
convention, so go ahead and follow it.

IsItPrime() first checks to see if the number
passed in is less than 2. If so, IsItPrime() returns
false, since 2 is the first prime number.

int IsItPrime(int candidate)
{
 int i, last;

 if (candidate < 2)
 return false;

If candidate has a value of 2 or greater, we’ll step
through all the numbers between 2 and the square
root of candidate looking for a factor. If this
algorithm is new to you, go back to the previous
chapter and check out the program nextPrime.
If we find a factor, we know the number isn’t prime,
and we’ll return false.

 else
 {

 last = sqrt(candidate);

 for (i = 2; i <= last; i++)
 {
 if ((candidate % i) == 0)
 return false;
 }
 }

If we get through the loop without finding a factor,
we know candidate is prime, and we return
true.

 return true;
}

If candidate is equal to 2, last will be equal
to 1.414, which will get truncated to 1, since last
is an int. If last is 1, the for loop won’t even
get through 1 iteration and will fall through to the
statement:

return true;

The same thing happens if candidate is 3. Since
2 and 3 are both prime, this works just fine. On the
other hand, this little example shows you how careful
you have to be to check your code, to make sure it
works in all cases.

Consider the function name IsItPrime(). In C,
when you name a function in the form of a true or

131

Chapter 7:
Pointers and
Parameters

false question, it is good form to return a value
of true or false. The question this function
answers is, “Is the candidate prime?” It is critical that
IsItPrime() return true if the candidate was
prime and false otherwise. When main() calls
IsItPrime(), main() is asking the question,
“Is the candidate prime?” In the case of the if
statement:

if (IsItPrime(i))
 printf(...);

main() is saying, “If i is prime, do the printf().”
Make sure your function return values make sense!

power.xcode
Our next program combines a global variable, a
pointer parameter, and some value parameters.
At the heart of the program is a function, called
DoPower(), that takes three parameters.
DoPower() takes a base and an exponent, raises
the base to the exponent power, and returns the
result in a parameter. Raising a base to an exponent
power is the same as multiplying the base by itself, an
exponent number of times.

For example, raising 2 to the fifth power (written as
25) is the same as saying 2*2*2*2*2, which is equal
to 32. In the expression 25, 2 is the base and 5 is the
exponent. The function DoPower() takes a base
and an exponent as parameters and raises the base

to the exponent power. DoPower() uses a third
parameter to return the result to the calling function.

The program also makes use of a global variable,
an int named gPrintTraceInfo, which
demonstrates one of the most important uses of a
global variable. Every function in the program checks
the value of the global gPrintTraceInfo. If
gPrintTraceInfo is true, each function prints
a message when the function is entered, and another
message when the function exits. In this way, you can
trace the execution of the program. By reading the
printf()s, you can see when a function is entered
and when it leaves.

132

Chapter 7:
Pointers and
Parameters

Most modern development environments feature a
piece of software, called a debugger, that lets you
trace the execution of your program, one line at a
time. Xcode has an excellent debugger!

To give it a try, first click in the left-hand-column of
your source code window, just to the left of a line of
code, to create a new breakpoint (a place for the
debugger to stop). Once the little breakpoint arrow
appears, select Show Debugger from the Debug
menu, then click the Build and Debug icon at the top
of the debugger window. Click the Step Over and Step
Into buttons to step through your program. To exit,
either step all the way through the program, or click
the stop sign icon.

Even if you have a debugger, there will be times when
it is handy to stick a debugging printf() in your
code. Whatever gets the job done.

If gPrintTraceInfo is set to true, the extra
function-tracing information will be printed in the
console window. If gPrintTraceInfo is set to
false, the extra information will not be printed.

As you’ll see in a moment, by simply changing the
value of a global, you can dramatically change the
way your program runs.

Running power
You’ll find power.xcode in the Learn C Projects
folder, in the 07.05 - power subfolder. Run power
and compare your results with the console window

shown in Figure 7.. This output was produced by
three consecutive calls to the function DoPower().
The three calls calculated the result of the
expressions 25, 34, and 53. Here’s how the program
works.

Figure 7. power output, with gPrintTraceInfo
set to false.

Stepping Through the Source Code
main.c starts with a pair of standard #includes
and the function prototype for DoPower(). Notice
that DoPower() is declared to be of type void,
telling you that DoPower() doesn’t return a value.
As you read through the code, think about how you
might rewrite DoPower() to return its result using
the return statement instead of via a parameter.

133

Chapter 7:
Pointers and
Parameters

#include <stdio.h>
#include <c.h>

void DoPower(int *resultPtr, int base, int
exponent);

Next comes the declaration of our global,
gPrintTraceInfo. Once again, notice that the
global starts with a g.

int gPrintTraceInfo;

main() starts off by setting gPrintTraceInfo
to false. Next, we check to see if tracing is turned
on. If so, we’ll print a message telling us we’ve
entered main().

int main (int argc, const char * argv[])
{
 int power;

 gPrintTraceInfo = false;

 if (gPrintTraceInfo)
 printf(“---> Starting main()...\n”);

C guarantees that it will initialize all global variables
to zero. Since false is equivalent to zero, we
could have avoided setting gPrintTraceInfo
to false, but that would have been a mistake.
Explicitly setting the global to a value makes the code
easier to read and is the right thing to do!

Here are our three calls to DoPower(), each of
which is followed by a printf() reporting our
results. If DoPower() returned its results via
a return statement, we could have eliminated
the variable power, and embedded the call to
DoPower() inside the printf() in power’s
place.

 DoPower(&power, 2, 5);
 printf(“2 to the 5th = %d.\n”, power);

 DoPower(&power, 3, 4);
 printf(“3 to the 4th = %d.\n”, power);

 DoPower(&power, 5, 3);
 printf(“5 to the 3rd = %d.\n”, power);

If tracing is turned on, we’ll print a message saying
that we are leaving main().

 if (gPrintTraceInfo)
 printf(“---> Leaving main()...\n”);

 return 0;
}

134

Chapter 7:
Pointers and
Parameters

The function DoPower() takes three parameters.
resultPtr is a pointer to an int. We’ll use that
pointer to pass back the function results. base and
exponent are value parameters that represent
the—guess what?—base and exponent.

void DoPower(int *resultPtr, int base, int
exponent)

{
 int i;

Once again, check the value of gPrintTraceInfo.
If it’s true, print a message telling us we’re at the
beginning of DoPower(). Notice the tab character
(represented by the characters \t) at the beginning
of the printf() quoted string. You’ll see what this
was for when we set gPrintTraceInfo to true.

 if (gPrintTraceInfo)
 printf(“\t---> Starting DoPower()...\n”
);

The following three lines calculate base raised to
the exponent power, accumulating the results
in the memory pointed to by resultPtr. When
main() called DoPower(), it passed &power as
its first parameter. This means that resultPtr
contains the address of (points to) the variable
power. Changing *resultPtr is exactly the same
as changing power. When DoPower() returns

to main(), the value of power will have been
changed. power was passed by-address (also called
by-reference), instead of by-value.

 *resultPtr = 1;
 for (i = 1; i <= exponent; i++)
 *resultPtr *= base;

Finally, if gPrintTraceInfo is true, print a
message telling us we’re leaving DoPower().

 if (gPrintTraceInfo)
 printf(“\t---> Leaving DoPower()...\n”
);

}

Figure 7.2 shows the console window when power
is run with gPrintTraceInfo set to true. See
the trace information? Find the lines printed when
you enter and exit DoPower(). The leading tab
characters help distinguish these lines.

135

Chapter 7:
Pointers and
Parameters

Figure 7.2 power output, with gPrintTraceInfo
set to true.

This tracing information was turned on and off by a
single global variable. As you start writing your own
programs, you’ll want to develop your own set of
global variable tricks.

What’s Next?
Wow! You really are becoming a C programmer. In
this chapter alone, you covered pointers, function
parameters (both by-value and by-address), global
variables, and function return values.

You’re starting to develop a sense of just how
powerful and sophisticated the C language really
is. You’ve built an excellent foundation. Now you’re
ready to take off.

The second half of our book (Volume 2) starts
with the introduction of the concept of data types.
Throughout the book, you’ve been working with
a single data type, the int. Our next chapter will
introduce the concept of arrays, strings, pointer
arithmetic and typed function return values. Let’s go.

136

Chapter 7:
Pointers and
Parameters

Exercises

) Predict the result of each of the following code
fragments:

a)
void AddOne(int *myVar);

int main (int argc, const char * argv[])
{
 int num, i;

 num = 5;

 for (i = 0; i < 20; i++)
 AddOne(&num);

 printf(“Final value is %d.”, num);

 return 0;
}

void AddOne(int *myVar)
{
 (*myVar) ++;
}

b)
int gNumber;
int MultiplyIt(int myVar);

int main (int argc, const char * argv[])
{
 int i;
 gNumber = 2;

 for (i = 1; i <= 2; i++)
 gNumber *= MultiplyIt(gNumber);

 printf(“Final value is %d.”, gNumber);

 return 0;
}

int MultiplyIt(int myVar)
{
 return(myVar * gNumber);
}

c)
int gNumber;
int DoubleIt(int myVar);

int main (int argc, const char * argv[])
{
 int i;
 gNumber = 1;

 for (i = 1; i <= 10; i++)
 gNumber = DoubleIt(gNumber);

 printf(“Final value is %d.”, gNumber);

 return 0;
}

int DoubleIt(int myVar)
{
 return 2 * myVar;
}

137

Chapter 7:
Pointers and
Parameters

2) Modify main.c. Delete the first parameter of the
function DoPower(), modifying the routine to
return its result as a function return value instead.

3) Modify main.c. Instead of printing prime
numbers, print only non-prime numbers. In
addition, print one message for non-primes that
are multiples of 3 and a different message for
non-primes that are not multiples of 3.

N
Chapter 8 Variable Data Types

138

ow we’re cooking! You may now consider yourself
a C Programmer, First Class. At this point, you’ve
mastered all the basic elements of C programming.
You know that C programs are made up of functions,
one—and only one!—of which is named main().
Each of these functions uses keywords (such as if,
for, and while), operators (such as =, ++, and *=),
and variables to manipulate the program’s data.

Sometimes you’ll use a global variable to share data
between several functions. At other times, you’ll use
a parameter to share a variable between a calling and
a called function. Sometimes these parameters are
passed by value, and sometimes pointers are used to
pass a parameter by address. Some functions return
values. Others, declared with the void keyword,
don’t return a value.

In this chapter, we’ll focus on variable types. Each of
the variables in the previous example programs has
been declared as an int. As you’ll soon see, there are
many other data types out there.

Other Data Types
So far, the focus has been on ints, which are
extremely useful when it comes to working with
numbers. You can add two ints together. You can
check if an int is even, odd, or prime. There are a lot
of things you can do with ints, as long as you limit
yourself to whole numbers.

Just as a reminder, 527, 33, and -2 are all whole
numbers, while 35.7, 92.1, and -1.2345 are not whole
numbers.

What do you do if you want to work with non-whole
numbers, such as 3.459 and -98.6? Check out this
slice of code:

int myNum;

myNum = 3.5;
printf(“myNum = %d”, myNum);

Since myNum is an int, the number 3.5 will be

139

Chapter 8:
Variable
Data Types

truncated before it is assigned to myNum. When this
code ends, myNum will be left with a value of 3 and
not 3.5 as intended. Do not despair. There are several
special C data types created especially for working
with non-whole, or floating point numbers.

The name floating-point refers to the decimal point
found in all floating-point numbers.

The three floating point data types are float,
double, and long double. The difference
between these types is the number of bytes allocated
to each and, therefore, the range of values each
can hold. The relative sizes of these three types is
completely implementation dependent. Here’s a
program you can run to tell you the size of these
three types in your development environment, and
to show you various ways to use printf() to print
floating point numbers.

floatSizer
Look inside the Learn C Projects folder, inside the
subfolder named 08.0 - floatSizer, and open the
project named floatSizer.xcode. Figure 8. shows the
results when I ran floatSizer on my Mac using
Xcode. The first three lines of output tell you the size,
in bytes, of the types float, double, and long
double, respectively.

Never assume the size of a type. As you’ll see
when we go through the source code, C gives you

everything you need to check the size of a specific
type in your development environment. If you need
to be sure of a type’s size, write a program and check
the size for yourself.

Figure 8. The output from floatSizer.

Walking Through the Source Code
main.c starts with the standard #include.

#include <stdio.h>

main() defines three variables, a float, a
double, and a long double.

140

Chapter 8:
Variable
Data Types

int main (int argc, const char * argv[])
{
 float myFloat;
 double myDouble;
 long double myLongDouble;

Next, we’ll assign a value to each of the three
variables. Notice that we’ve assigned the same
number to each.

 myFloat = 12345.67890123456789;
 myDouble = 12345.67890123456789;
 myLongDouble = 12345.67890123456789;

Now comes the fun part. We’ll start by using C’s
sizeof operator to print the size of each of our
three floating point types. Even though sizeof
doesn’t look like the other operators we’ve seen (+, *,
<<, and so on) it is indeed an operator. Stranger still,
sizeof requires a pair of parentheses surrounding
a single parameter, much like a function. The
parameter is either a type or a variable. sizeof()
returns the size, in bytes, of its parameter.

Like return, sizeof doesn’t always require a pair
of parentheses. If the sizeof operand is a type, the
parentheses are required. If the sizeof operand is
a variable, the parentheses are optional. Rather than
trying to remember this rule, avoid confusion and
always use parentheses with sizeof.

Did you notice the (int) to the left of each
sizeof? This is known as a typecast. A typecast
tells the compiler to convert a value of one type
to a specified type. In this case, we are taking the
type returned by sizeof and converting it to an
int. Why do this? sizeof returns a value of type
size_t (wierd type name, eh?) and printf()
doesn’t have a format specifier that corresponds to a
size_t. By converting the size_t to an int, we
can use the “%d” format specifier to print the value
returned by sizeof. Notice the extra “\n” at the
end of the third printf() that gives us a blank line
between the first three lines of output and the next
line of output.

 printf(“sizeof(float) = %d\n”, (int)sizeof(
float));

 printf(“sizeof(double) = %d\n”,
(int)sizeof(double));

 printf(“sizeof(long double) = %d\n\n”,
(int)sizeof(long double));

141

Chapter 8:
Variable
Data Types

If the concept of typecasting is confusing to you, have
no fear. We’ll get into typecasting in Chapter 11. Till
then, you can use this method whenever you want to
print the value returned by sizeof. Alternatively,
you might declare a variable of type int, assign the
value returned by sizeof to the int, then print
the int:

int myInt;

myInt = sizeof(float);

printf(“sizeof(float) = %d\n”, myInt

);

Use whichever method works for you.

The rest of this program is dedicated to various
and sundry ways you can print your floating point
numbers. So far, all of our programs have printed
ints using the “%d” format specifier. The Standard
Library has a set of format specifiers for all of C’s
built-in data types, including several for printing
floating point numbers.

First, we’ll use the format specifer “%f” to print our
three floating point numbers in their natural, decimal
format.

 printf(“myFloat = %f\n”, myFloat);
 printf(“myDouble = %f\n”, myDouble);
 printf(“myLongDouble = %f\n\n”, myLongDouble
);

Here’s the result of these three printf()s:

myFloat = 12345.678711
myDouble = 12345.678901
myLongDouble = 12345.678901

As a reminder, all three of these numbers was
assigned the value:

12345.67890123456789

Hmmm...None of the numbers we printed matches
this number. And the first number we printed is
different than the second and third numbers. What
gives? There are several problems here. As we’ve
already seen, this development environment uses 4
bytes for a float and 8 bytes each for a double
and long double. This means that the number:

12345.67890123456789

can be represented more accurately using a double
or long double than it can be using a float. In
addition, we are printing using the default precision
of the “%f” format specifier. In this case, we are only
printing 6 places past the decimal point. Though this
might be plenty of precision for most applications,
we’d like to see how accurate we can get.

142

Chapter 8:
Variable
Data Types

Our next three printf()s use format specifier
modifiers to more closely specify the output
produced by printf(). By using “%25.16f”
instead of “%f”, we tell printf() to print the
floating point number with an accuracy of 6 places
past the decimal, and to add spaces if necessary so
the number takes up at least 25 character positions.

 printf(“myFloat = %25.16f\n”, myFloat);
 printf(“myDouble = %25.16f\n”, myDouble);
 printf(“myLongDouble = %25.16f\n\n”,
myLongDouble);

Here’s the result of these three printf()s:

myFloat = 12345.6787109375000000
myDouble = 12345.6789012345670926
myLongDouble = 12345.6789012345670926

printf() printed each of these numbers to 6
places past the decimal place (count the digits
yourself), padding each result with zeros as needed.
Since the 6 digits to the right of the decimal, plus
 space for the decimal, plus 5 for the 5 digits to the
left of the decimal is equal to 22 (6++5=22), and
we asked printf() to use 25 character positions,
printf() added 3 spaces to the left of the number.

We originally asked printf() to print a float
with a value of:

12345.67890123456789

The best approximation of this number we were able
to represent by a float is:

12345.6787109375000000

Where did this approximation come from? The
answer has to do with the way your computer stores
floating-point numbers.

The fractional part of a number (the number to the
right of the decimal) is represented in binary just like
an integer. Instead of the sum of powers of 2, the
fractional part is represented as the sum of powers of
1/2. For example, the number .75 is equal to 1/2 + 1/4.
In binary, that’s 11.

The problem with this representation is that it’s
impossible to represent some numbers with
complete accuracy. If you need a higher degree of
accuracy, use double or long double instead of
float. Unless you cannot afford the extra memory
that the larger data types require, you are probably
better off using a double or long double in your
programs instead of a float for all your floating
point calculations.

Note that even an 8-byte double is not big enough
to perfectly represent our original number. Pretty
darn close, though!

The next four printf()s show you the result of

143

Chapter 8:
Variable
Data Types

using different modifer values to print the same
float.

 printf(“myFloat = %10.1f\n”, myFloat);
 printf(“myFloat = %.2f\n”, myFloat);
 printf(“myFloat = %.12f\n”, myFloat);
 printf(“myFloat = %.9f\n\n”, myFloat);

Here’s the output produced by each of the
printf()s.

myFloat = 12345.7
myFloat = 12345.68
myFloat = 12345.678710937500
myFloat = 12345.678710938

The specifier “%10.1f” told printf() to print
 digit past the decimal and to use 0 character
positions for the entire number. The specifier “%.2f”
told printf() to print 2 digits past the decimal
and to use as many character positions as necessary
to print the entire number. Notice that printf()
rounds off the result for you and doesn’t simply cut
off the number after the specified number of places.

The specifier “%.12f” told printf() to print 2
digits past the decimal and the specifier “%.9f” told
printf() to print 9 digits past the decimal. Again,
notice the rounding that takes place.

Unless you need to exactly control the total number
of characters used to print a number, you’ll probably
leave off the first modifier and just specify the
number of digits past the decimal you want printed,
using specifiers like “%.2f” and “%.9f”.

If you do use a two part modifier like “%3.2f”,
printf() will never cut off numbers to the left of
the decimal. For example, this code:

myFloat = 255.543;

printf(“myFloat = %3.2f”, myFLoat);

will produce this output:

myFloat = 255.54

Even though you told printf() to use 3 character
positions to print the number, printf() was smart
enough to not lose the numbers to the left of the
decimal.

The next printf() uses the specifier “%e”, asking
printf() to print the float using scientific or
exponential notation.

 printf(“myFloat = %e\n\n”, myFloat);

Here’s the corresponding output:

myFloat = 1.234568e+04

144

Chapter 8:
Variable
Data Types

.234568e+04 is equal to .234568 times 0 to the
4th power, or .234568*04 or .234568 * 0000
== 2,345.68. The next two printf()s uses the
specifier “%g”, letting printf() decide whether
decimal or scientific notation will be the most
efficient way to represent this number. The first “%g”
deals with a myFloat value of 00,000.

 myFloat = 100000;
 printf(“myFloat = %g\n”, myFloat);

Here’s the output:

myFloat = 100000

Next, myFLoat’s value is changed to ,000,000 and
“%g” is used once again:

 myFloat = 1000000;
 printf(“myFloat = %g\n”, myFloat);

 return 0;
}

Here’s the result of this last printf(). As you can
see, this time printf() decided to represent the
number using exponential notation:

myFloat = 1e+06

The lesson here is, use floats if you want to work
with floating-point numbers. Use doubles or long
doubles for extra accuracy, but beware the extra
cost in memory usage. Use ints for maximum
speed, if you want to work exclusively with whole
numbers, or if you want to truncate a result.

The Integer Types
So far, you’ve learned about 4 different types - three
floating point types (float, double, and long
double) and one integer type (int). In this section,
we’ll introduce the remaining integer types: char,
short, and long. As was the case with the three
floating point types, the size of each of the 4 integer
types is implementation dependent. Our next
program, intSizer proves that point. You’ll find
intSizer.xcode in the Learn C Projects folder, in the
08.02 - intSizer subfolder.

145

Chapter 8:
Variable
Data Types

Though these forms are rarely used, a short is also
known as a short int and a long is also known
as a long int. As an example, these declarations
are perfectly legal:

short int myShort;

long int myLong;

Though the preceding declarations are just fine, you
are more likely to encounter declarations like these:

short myShort;

long myLong;

As always, choose your favorite style and be
consistent.

intSizer consists of four printf()s, one for
each of the integer types:

 printf(“sizeof(char) = %d\n”, (int)sizeof(
char));

 printf(“sizeof(short) = %d\n”,
(int)sizeof(short));

 printf(“sizeof(int) = %d\n”, (int)sizeof(
int));

 printf(“sizeof(long) = %d\n”, (int)sizeof(
long));

Like their floatSizer counterparts, these
printf()s use sizeof to determine the size of
a char, a short, an int, and a long. When I ran
intSizer on my Mac, here’s what I saw:

sizeof(char) = 1
sizeof(short) = 2
sizeof(int) = 4
sizeof(long) = 4

Again, the point to remember is, there are no
guarantees. Don’t assume the size of a type. Write a
program and check for yourself.

Type Value Ranges
All the integer types can be either signed or
unsigned. This obviously affects the range of values
handled by that type. For example, a signed byte
char can store a value from -28 to 27, while an
unsigned byte char can store a value from 0 to
255. If this clouds your mind with pain, now might be
a good time to go back and review Chapter 5.

A signed 2 byte short can store values ranging
from –32,768 to 32,767, while an unsigned 2 byte
short can store values ranging from 0 to 65,535.

A signed 4 byte long or int can store values
ranging from -2,47,483,648 to 2,47,483,647, while
an unsigned 4 byte long or int can store values
ranging from 0 to 4,294,967,295.

A 4 byte float can range in value from -3.4e+38 to
3.4e+38. An 8 byte double or long double can
range in value from -.7e+308 to .7e+308.

146

Chapter 8:
Variable
Data Types

Memory Efficiency Versus Safety
Each time you declare one of your program’s
variables, you’ll have a decision to make. What’s
the best type for this variable? In general, it’s a good
policy not to waste memory. Why use a long when
a short will do just fine? Why use a double when
a float will do the trick?

There is a danger in being too concerned with
memory efficiency. For example, suppose a customer
asked you to write a program designed to print the
numbers through 00, one number per line. Sounds
pretty straightforward. Just create a for loop and
embed a printf() in the loop. In the interests
of memory efficiency, you might use a char to act
as the loop’s counter. After all, if you declare your
counter as an unsigned char, it can hold values
ranging from 0 to 255. That should be plenty, right?

unsigned char counter;

for (counter=1; counter<=100; counter++)
 printf(“%d\n”, counter);

This program works just fine. But suppose your
customer comes back with a request, asking you to
extend the program to count from to 000 instead
of just to 00. You happily change the 00 to 000
like so:

unsigned char counter;

for (counter=1; counter<=1000; counter++)
 printf(“%d\n”, counter);

and take it for a spin. What do you think will happen
when you run it? To find out, open the Learn C
Projects folder, open the 08.03 - typeOverflow
subfolder, and open and run the project
typeOverflow.xcode.

Keep an eye on the numbers as they scroll by on the
screen. When the number 255 appears, a funny thing
happens. The next number will be 0, then , 2, etc.
If you leave the program running for a while it will
climb back up to 255, then jump to 0 and climb back
up again. This will continue forever. You’ll also likely
see a warning in the build window complaining that
the comparison is always true due to limited range of
data type.

Click on the red stop sign icon in the upper-right
corner of the run window (or type option-command-
R) to stop the program.

The problem with this program occurs when the for
loop increments counter when it has a value of
255. Since an unsigned char can hold a maximum
value of 255, incrementing it gives it a value of 0
again. Since counter can never get higher than 255,
the for loop never exits.

Just for kicks, edit the code and change the
unsigned char to a signed char. What do you
think will happen? Try it!

147

Chapter 8:
Variable
Data Types

The real solution here is to use a short, int, or
long instead of a char. Don’t be stingy. Unless
there is a real reason to worry about memory usage,
err on the side of extravagance. Err on the side of
safety!

Working With Characters
With its minimal range, you might think that a char
isn’t good for much. Actually, the C deities created
the char for a good reason. It is the perfect size to
hold a single alphabetic character. In C, an alphabetic
character is a single character placed between a pair
of single quotes (‘). Here’s a test to see if a char
variable contains the letter ‘a’:

char c;

c = ‘a’;

if (c == ‘a’)
 printf(“The variable c holds the character
‘a’.”);

As you can see, the character ‘a’ is used in both an
assignment statement and an if statement, just as if
it were a number or a variable.

The ASCII Character Set
In C, a signed char takes up a single byte and can
hold a value from -28 to 27. Now, how can a char
hold a numerical value, as well as a character value,
such as ‘a’ or ‘+’? The answer lies with the ASCII
character set.

ASCII stands for the American Standard Code for
Information Interchange.

148

Chapter 8:
Variable
Data Types

The ASCII character set is a set of 28 standard
characters, featuring the 26 lower-case letters, the
26 upper-case letters, the ten numerical digits, and
an assortment of other exciting characters, such as
‘}’ and ‘=’. Each of these characters corresponds
exactly to a value between 0 and 27. The ASCII
character set ignores the values between -28 and -.

For example, the character ‘a’ has an ASCII value
of 97. When a C compiler sees the character ‘a’ in a
piece of source code, it substitutes the value 97. Each
of the values from 0 to 27 is interchangeable with a
character from the ASCII character set.

Though we make use of the ASCII character set
throughout this book, you should know that there
are other character sets out there. Some foreign
alphabets have more characters than can be
represented by a single byte. To accommodate these
multibyte characters, ISO C features wide character
and wide string data types.

Though we won’t get into multibyte character sets in
this book, you should keep these things in mind as
you write your own code. Read up on the multibyte
extensions introduced as part of the ISO C standard.
There’s an excellent writeup in Harbison and Steele’s
C, A Reference Manual. The 5th edition was released in
2002. A terrific C reference, well worth the purchase
price.

Here’s an article whose title tells it all: The Absolute
Minumum Every Software Developer Absolutely,
Positively Must Know About Unicode and Character Sets
(No Excuses!), by Joel Spolsky:

http://joelonsoftware.com/articles/Unicode.html

Rock on, Joel!

ascii.xcode
Here’s a program that will make the ASCII character
set easier to understand. Go into the Learn C
Projects folder, then into the 08.04 - ascii subfolder
and open the project ascii.xcode.

Before we step through the project source code,
let’s take it for a spin. Select Build and Run from the

http://joelonsoftware.com/articles/Unicode.html

149

Chapter 8:
Variable
Data Types

Build menu. A console window similar to the one
in Figure 8.2 should appear. The first line of output
shows the characters corresponding to the ASCII
values from 32 to 47. Why start with 32? As it turns
out, the ASCII characters between 0 and 3 are
nonprintable characters like the backspace (ASCII
8) or the carriage return (ASCII 3). A table of the
nonprintable ASCII characters is presented later on.

Figure 8.2 The printable ASCII characters.

Notice that ASCII character 32 is a space, also known
as ‘ ‘. ASCII character 33 is ‘!’. ASCII character
47 is ‘/’. This presents some interesting coding
possibilities. For example, this code is perfectly
legitimate:

int sumOfChars;

sumOfChars = ‘!’ + ‘/’;

What a strange piece of code! Though you will
probably never do anything like this, try to predict
the value of the variable sumOfChars after the
assignment statement. And the answer is...

The character ‘!’ has a value of 33 and the character
‘/’ has a value of 47. Therefore, sumOfChars will
be left with a value of 80 following the assignment
statement. C allows you to represent any number
between 0 and 27 in two different ways: as an
ASCII character or as a number. Let’s get back to the
console window in Figure 8.2.

The second line of output shows the ASCII
characters from 48 through 57. As you can see, these
ten characters represent the digits 0 through 9.
Here’s a little piece of code that converts an ASCII
digit to its numerical counterpart:

char digit;
int convertedDigit;

digit = ‘3’;

convertedDigit = digit - ‘0’;

This code starts with a char named digit,

150

Chapter 8:
Variable
Data Types

initialized to hold the ASCII character ‘3’. The
character ‘3’ has a numerical value of 5. The next
line of code subtracts the ASCII character ‘0’ from
digit. Since the character ‘0’ has a numerical
value of 48, and digit started with a numerical
value of 5, convertedDigit ends up with a value
of 5 - 48, also known as 3. Isn’t that interesting?

Subtracting ‘0’ from any ASCII digit yields that
digit’s numerical counterpart. Though this is a great
trick if you know you’re working with ASCII, your code
will fail if the digits of the current character set are
not represented in the same way as they are in ASCII.
For example, if you were on a machine that used a
character set where the digits were sequenced from 1
to 9, followed by 0, the above trick wouldn’t work.

The next line of the console window shown in Figure
8.2 shows the ASCII characters with values ranging
from 58 to 64. The following line is pretty interesting.
It shows the range of ASCII characters from 65 to
90. Notice anything familiar about these characters?
They represent the complete, upper-case alphabet.

The next line in Figure 8.2 lists ASCII characters
with values from 9 through 96. The following line
lists the ASCII characters with values ranging from
97 through 22. These 26 characters represent the
complete lower-case alphabet.

Adding 32 to an upper-case ASCII character yields its
lower-case equivalent. Likewise, subtracting 32 from
a lower-case ASCII character yields its upper-case
equivalent.

Guess what? You never want to take advantage of
this information! Instead, use the Standard Library
routines tolower() and toupper() to do the
conversions for you.

As a general rule, try not to make assumptions about
the order of characters in the current character set.
Use Standard Library functions rather than working
directly with character values. Though it is tempting
to do these kinds of conversions yourself, by going
through the Standard Library you know your program
will work across single byte character sets.

The final line in Figure 8.2 lists the ASCII characters
from 23 to 26. As it turns out, the ASCII character
with a value of 27 is another nonprintable character.
Figure 8.3 shows a table of these “unprintables.” The
left column shows the ASCII code. The right column
shows the keyboard equivalent for that code along
with any appropriate comments. The characters
with comments by them are probably the only
unprintables you’ll ever make use of.

151

Chapter 8:
Variable
Data Types

ASCII Unprintables
0 Used to terminate text strings (Explained later in chapter)
1 Control-A
2 Control-B
3 Control-C
4 Control-D (End of file mark, see Chapter 10)
5 Control-E
6 Control-F
7 Control-G (Beep - works in Terminal, not in Xcode)
8 Control-H (Backspace)
9 Control-I (Tab)

10 Control-J (Line feed)
11 Control-K (Vertical feed)
12 Control-L (Form feed)
13 Control-M (Carriage return, no line feed)
14 Control-N
15 Control-O
16 Control-P
17 Control-Q
18 Control-R
19 Control-S
20 Control-T
21 Control-U
22 Control-V
23 Control-W
24 Control-X
25 Control-Y
26 Control-Z
27 Control-[(Escape character)
28 Control-|
29 Control-]
30 Control-^
31 Control-_

127 del

Figure 8.3 The ASCII unprintables.

Stepping Through the Source Code
Before we move on to our next topic, let’s take a
look at the source code that generated the ASCII
character listing in Figure 8.2. main.c starts off with
the usual #include and follows it by a function

prototype of the function PrintChars().
PrintChars() takes two parameters which define
a range of chars to print.

#include <stdio.h>

void PrintChars(char low, char high);

main() calls PrintChars() 7 times in an
attempt to functionally organize the ASCII
characters.

int main (int argc, const char * argv[])
{
 PrintChars(32, 47);
 PrintChars(48, 57);
 PrintChars(58, 64);
 PrintChars(65, 90);
 PrintChars(91, 96);
 PrintChars(97, 122);
 PrintChars(123, 126);

 return 0;
}

PrintChars() declares a local variable, c, to act
as a counter as we step through a range of chars.

void PrintChars(char low, char high)
{
 char c;

152

Chapter 8:
Variable
Data Types

We’ll use low and high to print a label for the
current line, showing the range of ASCII characters
to follow. Notice that we use %d to print the integer
version of these chars. %d can handle any integer
types no bigger than an int.

 printf(“%d to %d ---> “, low, high);

Next, a for loop is used to step through each of
the ASCII characters, from low to high, using
printf() to print each of the characters next to
each other on the same line. The printf() bears
closer inspection. Notice the use of %c (instead of
our usual %d) to tell printf() to print a single
ASCII character.

 for (c = low; c <= high; c++)
 printf(“%c”, c);

Once the line is printed, a single new line is printed,
moving the cursor to the beginning of the next line in
the console window. Thus ends PrintChars().

 printf(“\n”);
}

The char data type is extremely useful to C
programmers (such as yourself). The next two topics,
arrays and text strings, will show you why. As you

read through these two topics, keep the concept of
ASCII characters in the back of your mind. As you
reach the end of the section on text strings, you’ll see
an important relationship develop between all three
topics.

153

Chapter 8:
Variable
Data Types

Arrays
The next topic for discussion is arrays. An array turns
a single variable into a list of variables. For example,
this declaration:

int myNumber[3];

creates three separate int variables, referred to in
your program as myNumber[0], myNumber[1
], and myNumber[2]. Each of these variables is
known as an array element. The number between the
brackets ([and] are known as brackets or square
brackets) is called an index. In this declaration:

char myChar[20];

the name of the array is myChar. This declaration
will create an array of type char with a dimension of
20. The dimension of an array is the array’s number
of elements. The array elements will have indices
(indices, indexes, we’re talking more than one index
here) that run from 0 to 9.

In C, array indices always run from 0 to one less than
the array’s dimension.

This slice of code first declares an array of 00 ints,
then assigns each int a value of 0:

int myNumber[100], i;

for (i=0; i<100; i++)
 myNumber[i] = 0;

You could have accomplished the same thing by
declaring 00 individual ints, then initializing each
individual int. Here’s what that code might look
like:

int myNumber0, myNumber1,, myNumber99;

myNumber0 = 0;
myNumber1 = 0;
 .
 .
 .
myNumber99 = 0;

It would take 00 lines of code just to initialize these
variables! By using an array, we’ve accomplished the
same thing in just a few lines of code. Look at this
code fragment:

sum = 0;
for (i=0; i<100; i++)
 sum += myNumber[i];

printf(“The sum of the 100 numbers is %d.”,
sum);

This code adds together the value of all 00 elements

154

Chapter 8:
Variable
Data Types

of the array myNumber.

In this example, the for loop is used to step
through an array, performing some operation on
each of the array’s elements. You’ll use this technique
frequently in your own C programs.

Why Use Arrays?
Programmers would be lost without arrays. Arrays
allow you to keep lists of things. For example, if you
need to maintain a list of 50 employee numbers,
declare an array of 50 ints. You can declare an array
using any C type. For example, this code:

float salaries[50];

declares an array of 50 floating-point numbers. This
might be useful for maintaining a list of employee
salaries.

Use an array when you want to maintain a list of
related data. Here’s an example.

dice.xcode
Look in the Learn C Projects folder, inside the 08.05
- dice subfolder, and open the project dice.xcode.
dice simulates the rolling of a pair of dice. After
each roll, the program adds the two dice together,
keeping track of the total. It rolls the dice ,000
times, then reports on the results. Give it a try!

Run dice by selecting Build and Run from the Build
menu. A console window should appear, similar to
the one in Figure 8.4. Take a look at the output—it’s
pretty interesting. The first column lists all the
possible totals of two dice. Since the lowest possible
roll of a pair of six-sided dice is and , the first entry
in the column is 2. The column counts all the way up
to 2, the highest possible roll (achieved by a roll of 6
and 6).

Figure 8.4 dice in action. Your mileage may vary!

The number in parentheses is the total number of
rolls (out of ,000 rolls) that matched that row’s
number. For example, the first row describes the dice
rolls that total 2. In this run, the program rolled 3

155

Chapter 8:
Variable
Data Types

2’s. Finally, the program prints an x for every ten of
these rolls. Since 3 2’s were rolled, three x’s were
printed at the end of the 2’s row. Since 60 7’s were
rolled, 6 x’s were printed at the end of the 7’s row.

Recognize the curve depicted by the x’s in Figure
8.4? The curve represents a “normal” probability
distribution, also known as a bell curve. According to
the curve, you are about 8.4 times more likely to roll a
7 as you are to roll a 12. Want to know why? Check out
a book on probability and statistics.

Let’s take a look at the source code that makes this
possible.

Stepping Through the Source Code
main.c starts off with three #includes. <stdlib.
h> gives us access to the routines rand() and
srand(), <time.h> gives us access to clock(),
and <stdio.h> gives us access to printf().

#include <stdlib.h>
#include <time.h>
#include <stdio.h>

Here are the function prototypes for RollOne(),
PrintRolls(), and PrintX(). You’ll see how
these routines work as we walk through the code.

int RollOne(void);

void PrintRolls(int rolls[]);
void PrintX(int howMany);

main() declares an array of 3 ints named rolls.
rolls will keep track of the possible types of dice
rolls. rolls[2] will keep track of the total number
of 2’s, rolls[3] will keep track of the total number
of 3’s, and so on, up until rolls[12] which will
keep track of the total number of 2’s rolled. Since
there is no way to roll a 0 or a with a pair of dice,
rolls[0] and rolls[1] will go unused.

int main (int argc, const char * argv[])
{
 int rolls[13], twoDice, i;

We could have rewritten the program using an array
of 11 ints, thereby saving 2 ints worth of memory.
If we did that, rolls[0] would track the number of
2’s rolled, rolls[1] would track the number of 3’s
rolled, etc. This would have made the program a little
harder to read, since rolls[i] would be referring
to the number of (i+2)’s rolled.

In general, it is OK to sacrifice memory to make
your program easier to read, as long as program
performance isn’t compromised.

The function srand() is part of the Standard
Library. It initializes a random number generator,
using a seed provided by another Standard Library

156

Chapter 8:
Variable
Data Types

function, clock(). Once the random number
generator is initialized, another function, rand(),
will return an int with a random value.

 srand(clock());

Why random numbers? Sometimes you want to
add an element of unpredictability to your program.
For example, in our program, we want to roll a pair
of dice again and again. The program would be
pretty boring if it rolled the same numbers over and
over. By using a random number generator, we can
generate a random number between and 6, thus
simulating the roll of a single die!

main()’s next step is to initialize each of the
elements of the array rolls to 0. This is appropriate
since no rolls of any kind have taken place yet.

 for (i=0; i<=12; i++)
 rolls[i] = 0;

Now comes Miller time! This for loop rolls the dice
,000 times. As you’ll see, the function RollOne()
returns a random number between and 6,
simulating the roll of a single die. By calling it twice,
then storing the sum of the two rolls in the variable
twoDice, we’ve simulated the roll of two dice.

 for (i=1; i <= 1000; i++)
 {
 twoDice = RollOne() + RollOne();

The next line is pretty tricky, so hang on. At this
point, the variable twoDice holds a value between
2 and 2, the total of two individual dice rolls. We’ll
use that value to specify which of the rolls’ ints
to increment. If twoDice is 2 (if we rolled a pair
of sixes) we’ll increment rolls[12]. Get it? If not,
go back and read through this again. If you still feel
stymied (and it’s OK if you do) find a C buddy to help
you through this. It is important that you get this
concept. Be patient.

 ++ rolls[twoDice];
 }

Once we’re finished with our ,000 rolls, we’ll pass
rolls as a parameter to PrintRolls().

 PrintRolls(rolls);

 return 0;
}

Notice that we used the array name, without the
brackets (rolls instead of rolls[]). The name of
an array is a pointer to the first element of the array.
If you have access to this pointer, you have access to

157

Chapter 8:
Variable
Data Types

the entire array. You’ll see how this works when we
look at PrintRolls().

Just remember that passing the name of an array as a
parameter is exactly the same as passing a pointer to
the first element of the array. To prove this, edit main.
c and change this line of code:

PrintRolls(rolls);

to

PrintRolls(&(rolls[0]));

These two lines are exactly equivalent! The second
form passes the address of the first array element.
If you think back to our last chapter, we use the &
operator to pass a parameter by reference instead
of by value. By passing the address of the first array
element, you give PrintRolls() the ability to
both access and modify all of the array elements. This
is an important concept!

RollOne() first calls rand() to generate a
random number, ranging from 0 to 32,767 (actually,
the upper bound is defined by the constant RAND_
MAX, which is guaranteed to be at least 32,767). Next,
the % operator is used to return the remainder when
the random number is divided by 6. This yields a
random number ranging from 0 to 5. Finally, is
added to this number, converting it to a number
between and 6, and that number is returned.

int RollOne(void)
{
 return (rand() % 6) + 1;
}

PrintRolls() starts off by declaring a single
parameter, an array pointer named rolls. Notice
that rolls was declared using square brackets,
telling the compiler that rolls is a pointer to the
first element of an array (in this case, to an array of
ints).

void PrintRolls(int rolls[])
{
 int i;

158

Chapter 8:
Variable
Data Types

PrintRolls() could also have declared its
parameter using this notation:

void PrintRolls(int *rolls)

instead of:

void PrintRolls(int rolls[])

Both of these notations describe a pointer to an int,
and both can be used to access the elements of an
array. You’ll learn more about the close relationship
between pointers and arrays as you make your way
through the rest of the book.

For now, remember this convention. If you are
declaring a parameter that will point to an array, use
the square bracket form. Otherwise, use the normal
pointer form.

Let’s get back to our program. Before the
previous tech block, we had just started looking
at PrintRolls(). The for loop steps through
the rolls array, one int at a time, starting with
rolls[2] and making its way to rolls[12].
For each element, PrintRolls() first prints the
roll number and then, in parentheses, the number
of times (out of ,000) that roll occurred. Next,
PrintX() is called to print a single x for every
ten rolls that occurred. Finally, a carriage return is
printed, preparing the console window for the next
roll.

 for (i=2; i<=12; i++)

 {
 printf(“%2d (%3d): “, i, rolls[i]);
 PrintX(rolls[i] / 10);
 printf(“\n”);
 }
}

PrintX() is pretty straightforward. It uses a for
loop to print the number of x’s specified by the
parameter howMany.

void PrintX(int howMany)
{
 int i;

 for (i=1; i<=howMany; i++)
 printf(“x”);
}

159

Chapter 8:
Variable
Data Types

Danger, Will Robinson!!!
Before we move on to our next topic, there is one
danger worth discussing at this point. See if you can
spot the potential hazard in this piece of code:

int myInts[3];

for (i=0; i<20; i++)
 myInts[i] = 0;

Yikes! The array myInts consists of exactly three
array elements, yet the for loop tries to initialize
20 elements. This is called exceeding the bounds of
your array. Because C is such an informal language, it
will let you “get away” with this kind of source code.
To you, that means Xcode will compile this code
without complaint. Your problems will start as soon
as the program tries to initialize the fourth array
element, which was never allocated.

What will happen? The safest thing to say is that the
results will be unpredictable. The problem is, the
program is trying to assign a value of 0 to a block of
memory that it doesn’t necessarily own. Anything
could happen. The program would most likely crash,
which means it stops behaving in a rational manner.
I’ve seen some cases where the computer actually
leaps off the desk, hops across the floor, and jumps
face first into the trash can.

Well, OK, not really. Modern operating systems
protect the boundaries of individual applications to

protect one application from crashing another. But
odd things will happen if you don’t keep your array
references in bounds.

As you code, be aware of the limitations of your
variables. For example, a char is limited to values
from -128 to 127. Don’t try to assign a value such as
536 to a char. Don’t reference myArray[27] if
you declared myArray with only ten elements. Be
careful!

160

Chapter 8:
Variable
Data Types

Text Strings
The first C program in this book made use of a text
string:

printf(“Hello, world!”);

This section will teach you how to use text strings
like “Hello, world!” in your own programs.
It will teach you how these strings are stored in
memory and how to create your own strings from
scratch.

A Text String in Memory
The text string “Hello, world!” exists in
memory as a sequence of 4 bytes (Figure 8.5). The
first 3 bytes consist of the 3 ASCII characters in
“Hello, world!”. Note that the seventh byte
contains a space (on an ASCII-centric computer, that
translates to a value of 32).

1

H
2

e
3

l
4

l
5

o
6

,
7 8

w
9

o
10

r
11

l
12

d
13

!
14

0space

Figure 8.5 The “Hello, World!” text string. Don’t
forget, byte 4 contains a zero.

The final byte (byte 4) has a value of zero, not to be
confused with the ASCII character ‘0’. The zero is

what makes this string a C string. Every C string ends
with a byte having a value of 0. The 0 identifies the
end of the string.

When you use a quoted string like “Hello,
world!” in your code, the compiler creates the
string for you. This type of string is called a string
constant. When you use a string constant in your
code, the detail work is done for you automatically. In
this example:

printf(“Hello, world!”);

the 4 bytes needed to represent the string in
memory are allocated automatically. The 0 is placed
in the fourteenth byte, automatically. You don’t have
to worry about these details when you use a string
constant.

String constants are great, but they are not always
appropriate. For example, suppose you want to
read in somebody’s name, then pass the name on to
printf() to display in the console window. Since
you won’t be able to predict the name that will be
typed in, you can’t predefine the name as a string
constant. Here’s an example.

name.xcode
Look in the Learn C Projects folder, inside the 08.06
- name subfolder, and open the project name.xcode.
name will ask you to type your first name on the

161

Chapter 8:
Variable
Data Types

keyboard. Once you’ve typed your first name, the
program will use your name to create a custom
welcome message. Then, name will tell you how
many characters long your name is. How useful!

To run name, select Build and Run from the Build
menu. A console window will appear, prompting you
for your first name, like this:

Type your first name, please:

Type your first name, then hit a carriage return.
When I did, I saw the output shown in Figure 8.6.
Let’s take a look at the source code that generated
this output.

Figure 8.6 name prompts you to type in your name, then
tells you how long your name is.

Stepping Through the Source Code
At the heart of main.c is a new Standard Library
function called scanf(). scanf() uses the same
format specifiers as printf() to read text in from
the keyboard. This code will read in an int:

int myInt;

scanf(“%d”, &myInt);

The %d tells scanf() to read in an int. Notice the
use of the & before the variable myInt. This passes
myInt’s address to scanf(), allowing scanf()
to change myInt’s value. To read in a float, use code

162

Chapter 8:
Variable
Data Types

like:

float myFloat;

scanf(“%f”, &myFloat);

main.c starts off with a pair of #includes.
<string.h> gives us access to the Standard
Library function strlen(), and <stdio.h>,
well, you know what we get from <stdio.h>.
printf(), right? Right.

#include <string.h>
#include <stdio.h>

To read in a text string, you have to first declare a
variable to place the text characters in. main.c uses
an array of characters for this purpose:

int main (int argc, const char * argv[])
{
 char name[50];

The array name is big enough to hold a 49-byte text
string. When you allocate space for a text string,
remember to save byte for the 0 that terminates the
string.

The program starts by printing a prompt. A prompt
is a text string that lets the user know the program is

waiting for input.

 printf(“Type your first name, please: “);

The Input Buffer
Before we get to the scanf() call, it helps to
understand how the computer handles input from
the keyboard. When the computer starts running
your program, it automatically creates a big array
of chars for the sole purpose of storing keyboard
input to your program. This array is known as your
program’s input buffer. The input buffer is carriage-
return based. Every time you hit a carriage return, all
the characters typed since the last carriage return are
appended to the current input buffer.

When your program starts, the input buffer is empty.
If you type this line from your keyboard:

123 abcd

followed by a carriage return, the input buffer will
look like Figure 8.7. The computer keeps track of the
current end of the input buffer. The space character
between the ‘123’ and the ‘abcd’ has an ASCII
value of 32. Notice that the carriage return was
actually placed in the input buffer.

163

Chapter 8:
Variable
Data Types

The ASCII value of the character used to indicate a
carriage return is implementation dependent. In most
consoles, an ASCII 10 indicates a carriage return. On
some, an ASCII 13 indicates a carriage return. Use the
‘\n’ character and you’ll always be safe.

1 2 3 a b c dspace

return

End of
Input Buffer

Figure 8.7 A snapshot of the input buffer.

Given the input buffer shown in Figure 8.7, suppose
your program called scanf(), like this:

scanf(“%d”, &myInt);

scanf() starts at the beginning of the input buffer
and reads a character at a time until it hits one of the
nonprintables; that is, a carriage return, tab, space, or
a 0, until it hits the end of the buffer, or until it hits a
character that conflicts with the format specifier (if
%d was used and the letter ‘a’ was encountered, for
example).

After the scanf(), the input buffer looks like

Figure 8.8. Notice that the characters passed on
to scanf() were removed from the input buffer
and that the rest of the characters slid over to
the beginning of the buffer. scanf() took the
characters ‘1’, ‘2’, and ‘3’ and converted them
to the integer 23, placing 23 in the variable myInt.

a b c d return

End of
Input Buffer

Figure 8.8 A second snapshot of the input buffer.

If you then typed the line:

3.5 Dave

followed by a carriage return, the input buffer would
look like Figure 8.9. At this point the input buffer
contains two carriage returns. To the input buffer, a
carriage return is just like any other character. To a
function like scanf(), the carriage return is white
space.

164

Chapter 8:
Variable
Data Types

a b c d 3 . 5 D a v ereturn

return

End of
Input Buffer

space

Figure 8.9 A third snapshot of the input buffer.

If you forgot what white space is, now would be a
good time to turn back to Chapter 5, where white
space was first described.

On With the Program
Before we started our discussion on the input buffer,
main() had just called printf() to prompt the
user for his or her first name:

 printf(“Type your first name, please: “);

Next, we called scanf() to read the first name
from the input buffer:

 scanf(“%s”, name);

Since the program just started, the input buffer is
empty. scanf() will wait until characters appear
in the input buffer, which will happen as soon as you
type some characters and hit a carriage return. Type

your first name and hit a carriage return.

scanf() will ignore white space characters in the
input buffer. For example, if you type a few spaces
and tabs, then hit a carriage return, scanf() will
still sit there, waiting for some real input. Try it!

Once you type in your name, scanf() will copy the
characters, a byte at a time, into the array of chars
pointed to by name. Remember, because name was
declared as an array, name points to the first of the
50 bytes allocated for the array.

If you type in the name Dave, scanf() will place
the four characters ‘D’, ‘a’, ‘v’, and ‘e’ in the
first four of the 50 bytes allocated for the array. Next,
scanf() will set the fifth byte to a value of 0 to
terminate the string properly (Figure 8.0). Since the
string is properly terminated by the 0 in name[4],
we don’t really care about the value of the bytes
name[5] through name[49].

165

Chapter 8:
Variable
Data Types

D a v e 0

name
points here

10 2 3 4 5 48 49

Figure 8.0 The array name after the string “Dave” is
copied to it. Notice that name[4] has a value of zero.

Next, we pass name on to printf(), asking it to
print the name as part of a welcoming message. The
%s tells printf() that name points to the first byte
of a zero-terminated string. printf() will step
through memory, one byte at a time, starting with
the byte that name points to. printf() will print
each byte in turn until it hits a byte with a value of
zero. The zero byte marks the end of the string.

 printf(“Welcome, %s.\n”, name);

If name[4] didn’t contain a 0, the string wouldn’t
be properly terminated. Passing a non-terminated
string to printf() is a sure way to confuse
printf(). printf() will step through memory
one byte at a time, printing a byte and looking for
a 0. It will keep printing bytes until it happens to
encounter a byte set to 0. Remember, C strings must
be terminated!

The next line of the program calls another Standard
Library function, called strlen(). strlen()
takes a pointer as a parameter and returns the
length, in bytes, of the string pointed to by the
parameter. strlen() depends on the string being 0
terminated. Just like sizeof(), strlen() returns
a value of type size_t. We’ll use a typecast to
convert the value to an int, then print it using %d.
Again, we’ll cover typecasting later in the book.

 printf(“Your name is %d characters long.”,
(int)strlen(name));

 return 0;
}

Our last program for this chapter demonstrates a few
more character-handling techniques, a new Standard
Library function, and an invaluable programmer’s
tool, the #define.

166

Chapter 8:
Variable
Data Types

The #define
The #define (pronounced pound-define) tells the
compiler to substitute one piece of text for another
throughout your source code. This statement:

#define kMaxPlayers 6

tells the compiler to substitute the character “6”
every time it finds the text “kMaxPlayers” in the
source code. kMaxPlayers is known as a macro.
As the C compiler goes through your code, it enters
all the #defines into a list, known as a dictionary,
performing all the #define substitutions as it goes.

It’s important to note that the compiler never actually
modifies your source code. The dictionary it creates
as it goes through your code is separate from your
source code and the substitutions it performs are
made as the source code is translated into machine
code.

Here’s an example of a #define in action:

#define kMaxArraySize 100

int main (int argc, const char * argv[])
{
 char myArray[kMaxArraySize];
 int i;

 for (i=0; i<kMaxArraySize; i++)

 myArray[i] = 0;

 return 0;
}

The #define at the beginning of this example
substitutes “100” for “kMaxArraySize”
everywhere it finds it in the source code file. In this
example, the substitution will be done twice. Though
your source code is not actually modified, here’s the
effect of this #define:

int main (int argc, const char * argv[])
{
 char myArray[100];
 int i;

 for (i=0; i<100; i++)
 myArray[i] = 0;

 return 0;
}

167

Chapter 8:
Variable
Data Types

Note that a #define must appear in the source
code file before it is used. In other words, this code
won’t compile:

int main (int argc, const char *
argv[])

{

 char myArray[kMaxArraySize];

 int i;

#define kMaxArraySize 100

 for (i=0; i<kMaxArraySize; i++)

 myArray[i] = 0;

 return 0;

}

Having a #define in the middle of your code is
just fine. The problem here is that the declaration of
myArray uses a #define that hasn’t occurred yet!

If you use #defines effectively, you’ll build more
flexible code. In the previous example, you can
change the size of the array by modifying a single line
of code, the #define. If your program is designed
correctly, you should be able to change the line to:

#define kMaxArraySize 200

then recompile your code, and your program should
still work properly. A good sign that you are using
#defines properly is an absence of constants in
your code. In the above example, the constant 00
was replaced by kMaxArraySize.

Many programmers use the same naming convention
for #defines as they use for global variables.
Instead of starting the name with a g (as in
gMyGlobal), a #define constant starts with a k
(as in kMyConstant).

Unix programmers tend to name their #define
constants using all upper case letters, sprinkled with
underscores “_” to act as word dividers (as in MAX_
ARRAY_SIZE).

As you’ll see in our next program, you can put
practically anything, even source code, into a
#define. Take a look:

#define kPrintReturn printf(“\n”);

While not particularly recommended, this #define
will work just fine, substituting the statement:

printf(“\n”);

for every occurrence of the text kPrintReturn in
your source code. You can base one #define on a

168

Chapter 8:
Variable
Data Types

previous #define:

#define kSideLength 5
#define kArea kSideLength * kSideLength

Interestingly, you could have reversed the order of
these two #defines, and your code would still
have compiled. As long as both entries are in the
dictionary, their order of occurrence in the dictionary
is not important.

What is important is that #define appear in the
source code before any source code that refers to it.

If this seems confusing, don’t sweat it. It won’t be on
the test.

Function-Like #define Macros
You can create a #define macro that takes one or
more arguments. Here’s an example:

#define kSquare(a) ((a) * (a))

This macro takes a single argument. The argument
can be any C expression. If you called the macro like
this:

myInt = kSquare(myInt + 1);

the compiler would use its first pass to turn the line
into this:

myInt = ((myInt + 1) * (myInt + 1));

Notice the usefulness of the parentheses in the
macro. If the macro were defined like this:

#define kSquare(a) a * a

the compiler would have produced:

myInt = myInt + 1 * myInt + 1;

which is not what we wanted. The only multiplication
that gets performed by this statement is 1 * myInt,
because the * operator has a higher precedence than
the + operator.

Be sure you pay strict attention to your use of white
space in your #define macros. For example, there’s
a world of difference between this macro:

#define kSquare(a) ((a) * (a))

and this macro (note the space between kSquare
and (a):

169

Chapter 8:
Variable
Data Types

#define kSquare (a) ((a) * (a))

This second form creates a #define constant
named kSquare which is defined as “(a)
((a) * (a))”. A call to this macro won’t even
compile because the compiler doesn’t know what “a”
is.

Here’s another interesting macro side-effect. Imagine
calling this macro:

#define kSquare(a) ((a) * (a))

like this:

mySquare = kSquare(myInt++);

The preprocessor pass expands this macro call to:

mySquare = ((myInt++) * (myInt++));

Do you see the problems here? First off, myInt will
get incremented twice by this macro call (probably
not what was intended). Secondly, the first myInt++
will get executed before the multiply happens,
yielding a final result of myInt*(myInt+1),
definitely not what you wanted! The point here: Be

careful when you pass an expression as a parameter
to a macro.

Let’s move on to our final example.

wordCount.xcode
Look in the Learn C Projects folder, inside the
08.07 - wordCount subfolder, and open the project
wordCount.xcode. wordCount will ask you to type
in a line of text and will count the number of words
in the text you type.

To run wordCount, select Build and Run from the
Build menu. wordCount will prompt you to type in
a line of text:

Type a line of text, please:

Type in a line of text, at least a few words long. End
your line by typing a carriage return. When you
hit the return, wordCount will report its results.
wordCount will ignore any white space, so feel free
to sprinkle your input with tabs, spaces, and the like.
My output is shown in Figure 8.. Let’s take a look at
the source code that generated this output.

170

Chapter 8:
Variable
Data Types

Figure 8. wordCount, doing its job.

Stepping Through the Source Code
main.c starts off with the usual #includes, and
then adds a new one. <ctype.h> includes the
prototype of the function isspace(), which takes
a char as input and returns true if the char is
either a tab (‘\t’), hard carriage return (return
without a line feed - ‘\r’), newline (return with a
line feed - ‘\n’), vertical tab (‘\v’), form feed (‘\
f’), or space (‘ ‘), and returns false otherwise.

#include <stdio.h>
#include <c.h>
#include <ctype.h>

Older C environments may include a variant of
isspace() called iswhite().

Next, we define a pair of constants.
kMaxLineLength specifies the largest line this
program can handle. 200 bytes should be plenty.
kZeroByte has a value of zero and is used to mark
the end of the line of input. More of this in a bit.

#define kMaxLineLength 200
#define kZeroByte 0

Here are the function prototypes for the two
functions ReadLine() and CountWords().
ReadLine() reads in a line of text and
CountWords() takes a line of text and returns the
number of words in the line.

void ReadLine(char *line);
int CountWords(char *line);

main() starts by defining an array of chars that
will hold the line of input we type and an int that
will hold the result of our call to CountWords().

int main (int argc, const char * argv[])
{
 char line[kMaxLineLength];
 int numWords;

171

Chapter 8:
Variable
Data Types

Once we type the prompt, we’ll pass line to
ReadLine(). Remember that line is a pointer
to the first byte of the array of chars. When
ReadLine() returns, line contains a line of text,
terminated by a zero byte, making line a legitimate,
zero-terminated C string. We’ll pass that string on to
CountWords().

 printf(“Type a line of text, please:\n”);

 ReadLine(line);
 numWords = CountWords(line);

We then print a message telling us how many words
we just counted.

 printf(“\n---- This line has %d word”,
numWords);

 if (numWords != 1)
 printf(“s”);

 printf(“ ----\n%s\n”, line);

 return 0;
}

This last bit of code shows attention to detail,
something very important in a good program. Notice
that the first printf() ended with the characters
“word”. If the program found either no words or
more than one word, we want to say:

This line has 0 words.

or

This line has 2 words.

If the program found exactly one word, the sentence
should read:

This line has 1 word.

The last if statement makes sure the “s” gets added
if needed.

In main(), we defined an array of chars to hold
the line of characters we type in. When main()
called ReadLine(), it passed the name of the array
as a parameter to ReadLine():

 char line[kMaxLineLength];

 ReadLine(line);

As we said earlier, the name of an array also acts as a
pointer to the first element of the array. In this case,
line is equivalent to &(line[0]). ReadLine()
now has a pointer to the first byte of main()’s line
array.

172

Chapter 8:
Variable
Data Types

void ReadLine(char *line)
{

This while loop calls getchar() to read
a character at a time from the input buffer.
getchar() returns the next character in the input
buffer or, if there’s an error, it returns the constant
EOF. You’ll learn more about EOF in Chapter 0.

The first time through the loop, line points to the
first byte of main()’s line array. At this point, the
expression *line is equivalent to the expression
line[0]. The first time through the loop, we’re
getting the first character from the input buffer and
copying it into line[0].

The while loop continues as long as the character
we just read in is not ‘\n’ (as long as we have not
yet retrieved the return character from the input
buffer).

 while ((*line = getchar()) != ‘\n’)
 line++;

Each time through the loop, we’ll increment
ReadLine()’s local copy of the pointer line, so it
points to the next byte in main()’s line array. The
next time through the loop, we’ll read a character
into the second byte of the array, then the third byte,
etc., until we read in a ‘\n’, and we drop out of the

loop.

This technique is known as pointer arithmetic. When
you increment a pointer that points into an array,
the value of the pointer is actually incremented just
enough to point to the next element of the array. For
example, if line were an array of 4 byte floats
instead of chars, this line of code:

line++;

would increment line by 4 instead of by 1. In both
cases, line would start off pointing to line[0]
then, after the statement line++, line would
point to line[1].

Take a look at this code:

char charPtr;

float floatPtr;

double doublePtr;

charPtr++;

floatPtr++;

doublePtr++;

In the last three statements, charPtr gets
incremented by 1 byte, floatPtr gets incremented
by 4 bytes, and doublePtr gets incremented by 8
bytes (assuming 1 byte chars, 4 byte floats, and 8
byte doubles).

173

Chapter 8:
Variable
Data Types

This is an extremely important concept to
understand. If this seems fuzzy to you, go back
and reread this section, then write some code to
make sure you truly understand how pointers work,
especially as they relate to arrays.

Once we drop out of the loop, we’ll place a zero in
the next position of the array. This turns the line
into a zero-terminated string we can print using
printf().

 *line = kZeroByte;
}

CountWords() also takes a pointer to the first
byte of main()’s line array as a parameter.
CountWords() will step through the array,
looking for non-white space characters. When one
is encountered, CountWords() sets inWord
to true and increments numWords, then keeps
stepping through the array looking for a white-space
character which marks the end of the current word.
Once the white-space is found, inWord is set to
false.

int CountWords(char *line)
{
 int numWords, inWord;

 numWords = 0;
 inWord = false;

This process continues until the zero byte marking
the end of the line is encountered.

 while (*line != kZeroByte)
 {
 if (! isspace(*line))
 {
 if (! inWord)
 {
 numWords++;
 inWord = true;
 }
 }
 else
 inWord = false;

 line++;
 }

Once we drop out of the loop, we’ll return the
number of words in the line.

 return numWords;
}

Now that you’ve seen arrays and pointers, there’s
something you should know. Every program in our
book features a main() function that takes a pair of
parameters:

174

Chapter 8:
Variable
Data Types

int main (int argc, const char *
argv[])

Though we won’t make use of these parameters in
the book, here’s the basics. The first parameter, argc,
is an int that tells you how many parameters are
folded into the second parameter, argv. argv is an
array of pointers, each of which points to a parameter.

And where do these parameters come from, you
may ask? Great question! They come from the Unix
command line. When you launch a program using
Terminal, you can add in a list of parameters. For
example, suppose we wrote a program that counted
the number of words in a text file. In the Unix
universe, we’d typically start the program like this:

$ countWords

The dollar sign ($) is the Unix command line prompt
and countWords is the name of the program we are
running. countWords might prompt us for the name
of a text file, then go count its words.

Another approach would be to launch the program
like so:

$ countWords myFile.txt

Now, when countWords gets launched, argc will
have a value of 1 and argv will contain a single array
element, a pointer to a char array containing the
string “myFile.txt”. Just thought you might be
wondering!

What’s Next?
Congratulations! You’ve made it through one of the
longest chapters in the book. You’ve mastered several
new data types, including floats and chars.
You’ve learned how to use arrays, especially in
conjunction with chars. You’ve also learned about
C’s text-substitution mechanism, the #define.

Chapter 9 will teach you how to combine C’s data
types to create your own customized data types
called structs. So go grab some lunch, lean back,
prop up your legs, and turn the page.

175

Chapter 8:
Variable
Data Types

Exercises
) What’s wrong with each of the following code

fragments:

 a)
 char c;
 int i;

 i=0;
 for (c=0; c<=255; c++)
 i += c;

 b)
 float myFloat;

 myFloat = 5.125;
 printf(“The value of myFloat is %d.\n”, f);

 c)
 char c;

 c = “a”;

 printf(“c holds the character %c.”, c);

 d)
 char c[5];

 c = “Hello, world!”;

 e)
 char c[kMaxArraySize]

 #define kMaxArraySize 20

 int i;

 for (i=0; i<kMaxArraySize; i++)
 c[i] = 0;

 f)
 #define kMaxArraySize 200

 char c[kMaxArraySize];

 c[kMaxArraySize] = 0;

 g)
 #define kMaxArraySize 200

 char c[kMaxArraySize], *cPtr;
 int i;

 cPtr = c;
 for (i=0; i<kMaxArraySize; i++)
 cPtr++ = 0;

176

Chapter 8:
Variable
Data Types

 h)
 #define kMaxArraySize 200

 char c[kMaxArraySize];
 int i;

 for (i=0; i<kMaxArraySize; i++)
 {
 *c = 0;
 c++;
 }

 i)
 #define kMaxArraySize 200;

2) Rewrite dice.xcode’s main.c, showing the possible
rolls using three dice instead of two.

3) Rewrite wordCount.xcode’s main.c, printing each
of the words, one per line.

I
Chapter 9 Design Your Own Data Structures

177

n Chapter 8, we introduced several new data types,
such as float, char, and short. We discussed
the range of each type and introduced the format
specification characters necessary to print each type
using printf(). Next, we introduced the concept
of arrays, focusing on the relationship between char
arrays and text strings. Along the way, we discovered
the #define, C’s text substitution mechanism.

This chapter will show you how to use existing
C types as building blocks to design your own
customized data structures.

Structures
There will be times when your programs will want
to bundle certain data together. For example,
suppose you were writing a program to organize
your compact disc collection. Imagine the type of
information you’d like to access for each CD. At the
least, you’d want to keep track of the artist’s name
and the name of the CD. You might also want to rate
each CD’s listenability on a scale of to 0.

In the next few sections, we’ll look at two separate
approaches to a basic CD-tracking program. Each
approach will revolve around a different set of data
structures. One will make use of arrays and the other
a set of custom designed data structures.

178

Chapter 9:
Design Your Own
Data Structures

Model A: Three Arrays
One way to model your CD collection is with a
separate array for each CD’s attributes:

#define kMaxCDs 5000
#define kMaxArtistLength 256
#define kMaxTitleLength 256

char rating[kMaxCDs];
char artist[kMaxCDs][kMaxArtistLength];
char title[kMaxCDs][kMaxTitleLength];

This code fragment uses three #defines.
kMaxCDs defines the maximum number of CDs
this program will track. kMaxArtistLength
defines the maximum length of a CD artist’s name.
kMaxTitleLength defines the maximum length
of a CD’s title.

rating is an array of 5,000 chars, one char
per CD. Each of the chars in this array will hold a
number from to 0, the rating we’ve assigned to a
particular CD. This line of code assigns a value of 8 to
CD 37:

rating[37] = 8; /* A pretty good CD */

The arrays artist and title are each known
as multi-dimensional arrays. A normal array, like
rating, is declared using a single dimension. The
statement:

float myArray[5];

declares a normal or one-dimensional array
containing 5 floats, namely:

myArray[0]
myArray[1]
myArray[2]
myArray[3]
myArray[4]

The statement:

float myArray[3][5];

declares a two-dimensional array, containing 3*5 = 5
floats, namely:

myArray[0][0]
myArray[0][1]
myArray[0][2]
myArray[0][3]
myArray[0][4]
myArray[1][0]
myArray[1][1]
myArray[1][2]
myArray[1][3]
myArray[1][4]
myArray[2][0]
myArray[2][1]

179

Chapter 9:
Design Your Own
Data Structures

myArray[2][2]
myArray[2][3]
myArray[2][4]

Think of a two dimensional array as an array of
arrays. myArray[0] is an array of 5 floats.
myArray[1] and myArray[2] are also arrays of 5
floats each.

Here’s a three dimensional array:

float myArray[3][5][10];

How many floats does this array contain? Tick,
tick, tick... Got it? 3*5*0 = 50. This version of
myArray contains 50 floats.

C allows you to create arrays of any dimension,
though you’ll rarely have a need for more than a
single dimension.

So why would you ever want a multi-dimensional
array? If you haven’t already guessed, the answer
to this question is going to lead us back to our CD
tracking example.

Here are the declarations for our three CD-tracking
arrays:

#define kMaxCDs 5000
#define kMaxArtistLength 256

#define kMaxTitleLength 256

char rating[kMaxCDs];
char artist[kMaxCDs][kMaxArtistLength];
char title[kMaxCDs][kMaxTitleLength];

Once again, rating contains one char per CD.
artist, on the other hand, contains an array of
chars for each CD. Each CD gets an array of chars
whose length is kMaxArtistLength. Each array
is large enough to hold an artist’s name up to 255
bytes long with a single byte left over to hold the
terminating zero byte. To restate this, the two-
dimensional array artist is large enough to hold
up to 5,000 artist names, each of which can be up to
255 characters long, not including the terminating
byte.

multiArray.xcode
Here’s a sample program that brings this concept
to life. multiArray defines the two dimensional
array title (as described above), prompts you to
type in a series of CD titles, stores the titles in the
two-dimensional title array, then prints out the
contents of title.

Open the Learn C Projects folder, go inside the folder
09.0 - multiArray, and open the project multiArray.
xcode. Run multiArray by selecting Build and Run
from the Build menu. multiArray will first tell
you how many bytes of memory are allocated for the
entire title array:

180

Chapter 9:
Design Your Own
Data Structures

The artist array takes up 1024 bytes of
memory.

To see where this number came from, here’s the
declaration of title from MultiArray:

#define kMaxCDs 4
#define kMaxTitleLength 256

char title[kMaxCDs][kMaxTitleLength];

By performing the #define substitution yourself,
you can see that title is defined as a 4 by 256 array.
4 times 256 is ,024, matching the result reported by
multiArray.

After multiArray reports the title array size, it
enters a loop, prompting you for your list of favorite
musical artists:

Title of CD #1:

Enter a CD title, then hit a return. You’ll be prompted
to enter a second CD title. Type in a total of 4 CD
titles, hitting a return at the end of each one.

multiArray will then step through the array, using
printf() to list the CDs you’ve entered. In case
your entire music collection consists entirely of a
slightly warped vinyl copy of Leonard Nimoy singing

some old Dylan classics, feel free to use my list,
shown in Figure 9..

Let’s take a look at the source code.

Figure 9. multiArray in action.

Stepping Through the Source Code
main.c starts off with a standard #include.
<stdio.h> gives us access to both printf()
and fgets(). fgets() reads a line of text from
console’s input buffer (also known as stdin).

#include <stdio.h>

181

Chapter 9:
Design Your Own
Data Structures

Back in the olden days, before black hat hackers,
when everyone was nice and good, programmers
used a function called gets() to read data from the
console. The problem is, gets() uses a finite buffer
to store a potentially infinite amount of input. For
example, suppose you declared a 256-byte array for
gets() to use to capture the user’s input. If all you
were asking for was an artist name, 256 bytes should
be plenty, right?

Suppose the user types in 300 bytes? Since you send
gets() a pointer to a buffer, the extra characters
will be written right off the end of the array, perhaps
writing over some other variables, perhaps trashing
the program itself.

Our replacement function, fgets(), allows you to
specify a limit on how many characters it can read
in. By limiting fgets() to the actual length of the
buffer you pass it, you avoid the problem of buffer
overflow. The concept of buffer overflow is extremely
important. Keep it in mind as you design your own
programs.

If you look up gets() in the Standard Library
documentation, you’ll see the notation that you
should not use gets() because of the potential for
buffer overflow. Check this out for yourself:

http://www.infosys.utas.edu.au/info/
documentation/C/CStdLib.html

Here’s an interesting article on buffer overflows,
as used by black hat hackers to attack individual
computers and the internet itself:

http://www.networkmagazine.com/article/
NMG20000511S0015

These two #defines will be used throughout the
code:

#define kMaxCDs 4
#define kMaxTitleLength 256

Here’s the function prototypes for
PrintCDTitle(). PrintCDTitle() will prints
out the specified CD title.

void PrintCDTitle(int cdNum,
char title[][kMaxTitleLength]);

main() starts off by defining title, our two-
dimensional array. title is large enough to hold 4
artists. The name of each artist can be up to 255 bytes
long, plus the zero terminating byte.

int main (int argc, const char * argv[])
{
 char title[kMaxCDs][
kMaxTitleLength];

http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html
http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html
http://www.networkmagazine.com/article/NMG20000511S0015
http://www.networkmagazine.com/article/NMG20000511S0015

182

Chapter 9:
Design Your Own
Data Structures

Notice anything different about the declaration of
title in the PrintCDTitle() prototype
and the declaration of title in main()? More
on that in a bit.

cdNum is a counter used to step through each of the
CD titles in a for loop.

 short cdNum;

result is a pointer to a char, also known as a
char-star. Though we don’t make use of it, result
captures the value returned by fgets(). If you
call a function that returns a value, be sure you are
prepared to capture the result in a variable of the
appropriate type, even if you never intend to use that
returned value.

 char *result;

This printf() prints out the size of the title
array. Notice that we’ve used the %ld format
specifier to print the result returned by sizeof.
%ld indicates that the type you are printing is the
size of a long, which is true for size_t, the type
returned by sizeof. If you use %ld, you won’t need
the (int) typecast we used in earlier programs.

 printf(“The artist array takes up %ld bytes
of memory.\n\n”,

 sizeof(title));

size_t is not guaranteed to be an unsigned
long, though it usually is. The only guarantee is that
size_t is the same size as that returned by the
sizeof operator. In our case, size_t is defined as
an unsigned long, so the “%ld” format specifier
will work just fine.

Here’s the loop that reads in the title names. cdNum
starts with a value of 0, is incremented by each time
through the loop, and stops as soon as cdNum is
equal to kMaxCDs. Why “equal to kMaxCDs”? Since
cdNum acts as an array index, it has to start with a
value of 0. Since there are 4 elements in the array,
they range in number from 0 to 3. If cdNum is equal
to kMaxCDs, we need to drop out of the loop or we’ll
be trying to access title[4], which does not exist.
Make sense?

 for (cdNum = 0; cdNum < kMaxCDs; cdNum++)
 {

Each time through the loop, we first print out the
prompt “Title of CD #”, followed by the value
cdNum + 1. Though C starts its arrays with 0, in real
life we start numbering things with .

183

Chapter 9:
Design Your Own
Data Structures

 printf(“Title of CD #%d: “, cdNum + 1);

Once the prompt is printed, we’ll call fgets() to
read in a line of text from the console. We’ll store the
line in the char array stored in title[cdNum].
We’ll tell fgets() to limit input to the length of
that char array, which is kMaxTitleLength. The
last parameter, stdin, tells fgets() to read its
input from the console, as opposed to reading from a
file.

 result = fgets(title[cdNum],
 kMaxTitleLength, stdin);

 }

Take a look at the first parameter we passed to
fgets():

title[cdNum]

What type is this parameter? Remember, title is a
two-dimensional array, and a two-dimensional array
is an array of arrays. title is an array of an array of
chars. title[cdNum] is an array of chars, and
thus exactly suited as a parameter to fgets().

Imagine an array of chars named blap:

char blap[100];

You’d have no problem passing blap as a parameter
to fgets(), right? fgets() would read the
characters from the input buffer and place them
in blap. title[0] is just like blap. Both are
pointers to an array of chars. blap[0] is the first
char of the array blap. Likewise, title[0][0]
is the first char of the array title[0].

OK, back to the code.

Once we drop out of the loop, we print a dividing
line, then loop on a call to PrintCDTitle() to
print the contents of our array of CD titles. The
first parameter to PrintCDTitle() specifies the
number of the CD you want printed. The second
parameter is the title array pointer.

 printf(“----\n”);

 for (cdNum = 0; cdNum < kMaxCDs; cdNum++)
 PrintCDTitle(cdNum, title);

Finally, we return 0 and thus ends main().

 return 0;
}

Take a look at the definition of PrintCDTitle()’s
second parameter. Notice that the first of the two
dimensions is missing (the first pair of brackets
is empty). While we could have included the first

184

Chapter 9:
Design Your Own
Data Structures

dimension (kMaxCDs), the fact that we were able to
leave it out makes a really interesting point. When
memory is allocated for an array, it is allocated as one
big block. To access a specific element of the array,
the compiler uses the dimensions of the array, as
well as the specific element requested to calculate an
offset into this block.

void PrintCDTitle(int cdNum, char title[][
kMaxTitleLength])

{
 printf(“Title of CD #%d: %s\n”,
 cdNum + 1, title[cdNum]);
}

In the case of title, the compiler allocated a
block of memory 4 * 256 = ,024 bytes long. Think
of this block as 4 char arrays, each of which is 256
bytes long. To get to the first byte of the first array,
we just use the pointer that was passed in (title
points to the first byte of the first of the 4 arrays).
To access the first byte of the second array (in C
notation, title[1][0]) the compiler adds 256 to
the pointer title. In other words, the start of the
second array is 256 bytes further in memory than
the start of the first array. The start of the 4th array is
3*256 = 768 bytes further in memory than the start of
the first array.

While it is nice to know how to compute array offsets
in memory, the point I’m going for here is that the
compiler calculates the title array offsets using

the second dimension and not the first dimension of
title (256 is used, 4 is not used).

The compiler could use the first array bound (4) to
verify that you don’t reference an array element that
is out of bounds. For example, the compiler could
complain if it sees this line of code:

title[5][0] = ‘\0’;

In this case, the compiler could tell you that you are
trying to reference a memory location outside the
block of memory allocated for title.

Guess what. C compilers don’t do bounds checking of
any kind. If you want to access memory beyond the
bounds of your array, no one will stop you. This is part
of the “charm” of C. C gives you the freedom to write
programs that crash in spectacular ways. Your job is to
learn how to avoid such pitfalls.

Take another look at the printf() inside
PrintCDTitle():

 printf(“Title of CD #%d: %s\n”,
 cdNum + 1, title[cdNum]);

Note the two format specifiers. The first, %d, is used
to print the CD number. The second, %s, is used to
print the CD title itself. The “\n” at the end of the
string is used to force a carriage return between each
of the CD titles.

185

Chapter 9:
Design Your Own
Data Structures

The more sharp-eyed among you may have noticed
that there is an extra carriage return between each of
the titles. To see this, flip back to Figure 9.1. Go ahead,
I’ll wait.

As it turns out, fgets() captures the carriage
return at the end of your input as part of the input
string. This means each CD title has a “\n” embedded
in it, just before the terminating 0. Not a big deal, but
simple enough to fix, if you care to.

First, include this line of code with your other
#include at the top of main.c:

#include <string.h>

After your call to fgets(), still inside the for loop,
insert this line of code:

title[cdNum][strlen(title[cdNum]
) - 1] = ‘\0’;

Yikes!!! Take a few moments to digest this line of
code. What we are doing is using the Standard Library
function strlen() to determine the length of
the current CD title. For example, if the title was
Jamboree, strlen() would return 9, because of
the extra “\n” character in the title.

We want to replace that “\n” with a 0. Note that we
used the character ‘\0’, which has a value of 0.
We could have used a 0 instead. So we subtract 1
from 9 to get 8. Since strings start counting with 0,
title[cdNum][8] is actually the 9th character in
the string. By setting that to ‘\0’, we’ve replace the
“\n” with a 0.

Now when you print, your extra carriage returns will
be gone.

Wanna see something interesting? Take a look
at the output shown in Figure 9.2. I shortened
kMaxTitleLength to 0, recompiled,
ran multiArray, then typed the digits
123456789012345 as the title of the first CD.

 When I hit a return, fgets() read its limit of 9
characters from the input buffer, saving one byte for
the terminating 0. The remaining 6 characters and
the trailing carriage return were read by fgets()
the next time through the for loop and the program
finished normally.

No big deal. When I return kMaxTitleLength to
256, all is well again.

186

Chapter 9:
Design Your Own
Data Structures

Figure 9.2 This output is the result of a bug in the
program. Take a look at the end of both lines labeled
Title of CD #1.

Back to Model A
Back in the beginning of the chapter, we described
a program that would track your CD collection.
The goal was to look at two different approaches to
solving the same problem. The first approach, Model
A, uses three arrays to hold a rating, artist name and
title for each CD in the collection:

#define kMaxCDs 5000
#define kMaxArtistLength 256
#define kMaxTitleLength 256

char rating[kMaxCDs];
char artist[kMaxCDs][kMaxArtistLength];
char title[kMaxCDs][kMaxTitleLength];

Before we move on to Model B, let’s take a closer
look at the memory used by the Model A arrays.

4The array rating uses 1 byte per CD (enough for
a 1-byte rating from 1 to 10).

4The array artist uses 256 bytes per CD (enough
for a text string holding the artist’s name, up to
255 bytes in length, plus the terminating byte).

4The array title also uses 256 bytes per CD
(enough for a text string holding the CD’s title, up
to 255 bytes in length, plus the terminating byte).

Add those three together and you find that Model A
allocates 53 bytes per CD. Since Model A allocates
space for 5,000 CDs when it declares its three key
arrays, it uses 5,000 * 53 = 2,565,000 bytes.

187

Chapter 9:
Design Your Own
Data Structures

Since the program really only needs 53 bytes per
CD, wouldn’t it be nice if you could allocate the
memory for a CD when you need it? With this type
of approach, if your collection only consisted of 50
CDs, you’d only have to use 50 * 53 = 25,650 bytes of
memory instead of 2,565,000.

As you’ll see by the end of the chapter, C provides
a mechanism for allocating memory as you need it.
Model B takes a first step toward memory efficiency
by creating a single data structure that contains all
the information relevant to a single CD. Later in
the chapter you’ll learn how to allocate just enough
memory for a single structure.

Model B: The Data Structure
Approach
As stated earlier, our CD program must keep track of
a rating (from to 0), the CD artist’s name, and the
CD’s title:

#define kMaxCDs 5000
#define kMaxArtistLength 256
#define kMaxTitleLength 256

char rating[kMaxCDs];
char artist[kMaxCDs][kMaxArtistLength];
char title[kMaxCDs][kMaxTitleLength];

C provides the perfect mechanism for wrapping
all three of these variables in one tidy bundle. A
struct allows you to associate any number of
variables together under a single name. Here’s an
example of a struct declaration:

#define kMaxArtistLength 256
#define kMaxTitleLength 256

struct CDInfo
{
 char rating;
 char artist[kMaxArtistLength];
 char title[kMaxTitleLength];
}

This struct type declaration creates a new type called
CDInfo. Just as you’d use a type like short or

188

Chapter 9:
Design Your Own
Data Structures

float to declare a variable, you can use this new
type to declare an individual struct. Here’s an
example:

struct CDInfo myInfo;

This line of code uses the previous type declaration
as a template to create an individual struct. The
compiler uses the type declaration to tell it how
much memory to allocate for the struct, then
allocates a block of memory large enough to hold all
of the individual variables that make up the struct.

The variables that form the struct are known as
fields. A struct of type CDInfo has 3 fields: a
char named rating, an array of chars named
artist, and an array of chars named title. To
access the fields of a struct, use the “.” operator:

struct CDInfo myInfo;

myInfo.rating = 7;

Notice the . between the struct name (myInfo)
and the field name (rating). The . following a
struct name tells the compiler that a field name is
to follow.

structSize.xcode
Here’s a program that demonstrates the declaration
of a struct type, as well as the definition of an
individual struct. Open the Learn C Projects
folder, go inside the folder 09.02 - structSize,
and open the project structSize.xcode. Run
structSize.

Compare your output with the console window
shown in Figure 9.3. They should be the same.
The first three lines of output show the rating,
artist, and title fields. To the right of each
field name, you’ll find printed the number of bytes of
memory allocated to that field. The last line of output
shows the memory allocated to the entire struct.

189

Chapter 9:
Design Your Own
Data Structures

Figure 9.3 structSize shows the size of a CDInfo
struct.

Stepping Through the Source Code
If you haven’t done so already, quit structSize
and take a minute to look over the source code in
main.c. Once you feel comfortable with it, read on.

main.c starts off with our standard #include along
with a brand new one:

#include <stdio.h>
#include “structSize.h”

The angle-brackets (<>) that surrounds all the
include files we’ve seen so far tell the compiler to
look in the include file directories that it knows

about. When you surround the include file name by
double-quotes (“”) instead of angle-brackets, like
those around “structSize.h” in this example,
you are telling the compiler to look for this include
file in the same folder as the including source code
file.

Regardless of where it locates the include file, the
compiler treats the contents of the include file as if it
were actually inside the including file. In this case, the
compiler treats <stdio.h> and “structSize.
h” as if they were directly inside main.c.

As you’ve already seen, C include files typically end
in the two characters “.h”. Though you can give your
include files any name you like, the “.h” convention
is one you should definitely stick with. Include files
are also known as header files, which is where the “h”
comes from.

Let’s take a look at structSize.h. One way to do this is
to select Open… from the File menu, navigate into
the same directory as the structSize.xcode project,
and select the file.

A simpler way to do this is to use Xcode’s include
file popup menu, as shown in Figure 9.4. In the
project window, look towards the right side of the
window, just above the vertical scrollbar, for a popup
menu whose label is in the shape of a #. Click on the
popup and select structSize.h from the menu. A new
window will open containing structSize.h.

190

Chapter 9:
Design Your Own
Data Structures

Figure 9.4 Selecting an include file from Xcode’s include
file popup.

Include files typically contain things like #defines,
global variables, and function prototypes. By
embedding these things in an include file, you
declutter your source code file and, more importantly,
you make this common source code available to
other source code files via a single #include.

structSize.h starts off with two #defines you’ve
seen before.

#define kMaxArtistLength 256
#define kMaxTitleLength 256

Next comes the declaration of the struct type,
CDInfo:

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
 char rating;
 char artist[kMaxArtistLength];
 char title[kMaxTitleLength];
};

By including the header file at the top of the file
(where we might place our globals), we’ve made
the CDInfo struct type available to all of the
functions inside main.c. If we placed the CDInfo
type declaration inside of main() instead, our
program would still have worked (as long as we
placed it before the definition of myInfo), but we
would then not have access to the CDInfo type
outside of main().

That’s all that was in the header file structSize.
h. Back in main.c, main() starts by defining a
CDInfo struct named myInfo. myInfo has 3
fields, myInfo.rating, myInfo.artist, and
myInfo.title.

int main (int argc, const char * argv[])
{
 struct CDInfo myInfo;

The next three statements print the size of the three
myInfo fields. Notice that we are again using the
%ld format specifier to print the value returned by

191

Chapter 9:
Design Your Own
Data Structures

sizeof.

 printf(“rating field: %ld byte\n”,
 sizeof(myInfo.rating));

 printf(“artist field: %ld bytes\n”,
 sizeof(myInfo.artist));

 printf(“title field: %ld bytes\n”,
 sizeof(myInfo.title));

This next printf() prints a separator line, purely
for aesthetics. Notice the way everything lines up in
Figure 9.3?

 printf(“ ---------\n”);

Finally, we print the total number of bytes allocated
to the struct. Do the numbers add up? They should!

 printf(“myInfo struct: %ld bytes”,
 sizeof(myInfo));

 return 0;
}

As it turns out, there are some computers where the
numbers will not add up. Here’s why. Some computers
have rules they follow to keep various data types
lined up a certain way. For example, on old 680x0
machines, the compiler forces all data larger than a
char to start on an even-byte boundary (at an even
memory address). A long will always start at an
even address. A short will always start at an even
address. A struct, no matter its size, will always
start at an even address. Conversely, a char or array
of chars can start at either an odd or even address.
In addition, on a 680x0 machine, a struct must
always have an even number of bytes.

In our example, the three struct fields are all either
chars or arrays of chars, so they are all allowed to
start at either an odd or even address. The three fields
total to 103 bytes. Since a struct on a 680x0 must
always have an even number of bytes, the compiler
adds an extra byte (known as padding or a pad byte)
at the end of the struct.

You might never see an example of this, but it is
worth remembering that data alignment rules are
not specific to the C language and can vary from CPU
type to CPU type. When in doubt, write some code
and try it out.

192

Chapter 9:
Design Your Own
Data Structures

Passing a Struct as a Parameter
Think back to the CD tracking program we’ve been
discussing throughout the chapter. We started off
with three separate arrays, each of which tracked a
separate element. One array stored the rating field,
another stored the CD artist, and the third stored the
title of each CD.

We then introduced the concept of a structure that
would group all the elements of one CD together, in
a single struct. One advantage of a struct is that
you can pass all the information about a CD using a
single pointer. Imagine a routine called PrintCD(),
designed to print the three elements that describe a
single CD. Using the original array-based model, we’d
have to pass three parameters to PrintCD():

void PrintCD(char rating, char *artist, char
*title)

{
 printf(“rating: %d\n”, rating);
 printf(“artist: %s\n”, artist);
 printf(“title: %s\n”, title);
}

Using the struct-based model, however, we could
pass the info using a single pointer. As a reminder,
here’s the CDInfo struct declaration again:

#define kMaxArtistLength 256
#define kMaxTitleLength 256

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
 char rating;
 char artist[kMaxArtistLength];
 char title[kMaxTitleLength];
};

This version of main() defines a CDInfo
struct and passes its address to a new version of
PrintCD() (we’ll get to it next).

int main (int argc, const char * argv[])
{
 struct CDInfo myInfo;

 PrintCD(&myInfo);

 return 0;
}

Just as has been the case in earlier programs, passing
the address of a variable to a function gives that
function the ability to modify the original variable.
Passing the address of myInfo to PrintCD() gives
PrintCD() the ability to modify the three myInfo
fields. Though our new version of PrintCD()
doesn’t modify myInfo, it’s important to know that
that opportunity exists. Here’s the new, struct-
based version of PrintCD():

193

Chapter 9:
Design Your Own
Data Structures

void PrintCD(struct CDInfo *myCDPtr)
{
 printf(“rating: %d\n”, (*myCDPtr).rating);
 printf(“artist: %s\n”, myCDPtr->artist);
 printf(“title: %s\n”, myCDPtr->title);
}

Notice that PrintCD() receives its parameter as a
pointer to (i.e., the address of) a CDInfo struct.
The first printf() uses the * operator to turn the
struct pointer back to the struct it points to,
then uses the . operator to access the rating field:

(*myCDPtr).rating

C features a special operator, ->, that lets you
accomplish the exact same thing. The -> operator
is binary. That is, it requires both a left and right
operand. The left operand is a pointer to a struct,
and the right operand is the struct field. The
notation:

myCDPtr->artist

is exactly the same as:

(*myCDPtr).rating

Use whichever form you prefer. In general, most

C programmers use the -> operator to get from a
struct’s pointer to one of the struct’s fields.

Passing a Copy of the Struct
Here’s a version of main() that passes the struct
itself, instead of its address:

int main (int argc, const char * argv[])
{
 struct CDInfo myInfo;

 PrintCD(myInfo);
}

As always, when the compiler encounters a function
parameter, it passes a copy of the parameter to
the receiving routine. The previous version of
PrintCD() received a copy of the address of a
CDInfo struct.

In this new version of PrintCD(), the compiler
passes a copy of the entire CDInfo struct, not
just a copy of its address. This copy of the CDInfo
struct includes copies of the rating field, and
the artist and title arrays.

void PrintCD(struct CDInfo myCD)
{
 printf(“rating: %d\n”, myCD.rating);
 printf(“artist: %s\n”, myCD.artist);
 printf(“title: %s\n”, myCD.title);

}

194

Chapter 9:
Design Your Own
Data Structures

When a function exits, all of its local variables (except
for static variables, which we’ll cover in chapter 11)
are no longer available. This means that any changes
you make to a local parameter are lost when the
function returns. If this version of PrintCD() made
changes to its local copy of the CDInfo struct,
those changes would be lost when PrintCD()
returned.

Sometimes you’ll want to pass a copy of a struct.
One advantage this technique offers is that there’s
no way that the receiving function can modify the
original struct. Another advantage is that it offers
a simple mechanism for making a copy of a struct.
A disadvantage of this technique is that copying a
struct takes time and uses memory. Though time
won’t usually be a problem, memory usage might be,
especially if your struct gets pretty large. Just be
aware that whatever you pass as a parameter is going
to get copied by the compiler. Pass a struct as a
parameter, the compiler will copy the struct. Pass
a pointer to a struct, the compiler will copy the
pointer.

paramAddress.xcode
There’s a sample program in the Learn C
Projects folder, inside a subfolder named 09.03 -
paramAddress, that should help show the difference
between passing the address of a struct and
passing a copy of the struct. Open and run
paramAddress.xcode.

main() defines a CDInfo struct named myCD,
then prints the address of myCD’s rating field:

 printf(“Address of myCD.rating in main():
%p\n”,

 &(myCD.rating));

Notice that we print an address using the %p format
specifier. The p stands for pointer. This is the proper
way to print an address in C. Here’s the output of this
printf():

Address of myCD.rating in main():
0xbffffba0

Next, main() passes the address of myCD as well
as myCD itself as parameters to a routine named
PrintParamInfo():

PrintParamInfo(&myCD, myCD);

Here’s the prototype for PrintParamInfo():

void PrintParamInfo(struct CDInfo *myCDPtr,
 struct CDInfo myCDCopy);

The first parameter is a pointer to main()’s myCD
struct. The second parameter is a copy of the same

195

Chapter 9:
Design Your Own
Data Structures

struct. PrintParamInfo() prints the address
of the rating field of each version of myCD:

 printf(“Address of myCDPtr->rating in
PrintParamInfo(): %p\n”,

 &(myCDPtr->rating));
 printf(“Address of myCDCopy.rating in
PrintParamInfo(): %p\n”,

 &(myCDCopy.rating));

Here are the results, including the line of output
generated by main():

Address of myCD.rating in main():
0xbffffba0

Address of myCDPtr->rating in
PrintParamInfo(): 0xbffffba0

Address of myCDCopy.rating in
PrintParamInfo(): 0xbffffb2c

Notice that the rating field accessed via a pointer
has the same address as the original rating field in
main()’s myCD struct. If PrintParamInfo()
uses the first parameter to modify the rating field,
it will, in effect, be changing main()’s rating field.

If PrintParamInfo() uses the second parameter
to modify the rating field, main()’s rating field
will remain untouched.

By the way, most programmers use hexadecimal
notation (hex for short) when they print addresses.
Hex notation represents numbers as base 16 instead
of the normal base 10 you are used to. Instead of the
ten digits 0 through 9, hex features the 16 digits 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, and f. Each digit of a
number represents a successive power of 16 instead
of successive powers of 10.

For example, the number 532 in base 10 is equal
to 5*102 + 3*101 + 2*100 = 5*100+3*10+2*1. The
number 532 in hex is equal to 5*162 + 3*161 + 2*160 =
5*256+3*16+2*1 = 1330 in base 10. The number ff in hex
is equal to 15*16 + 15*1 = 255 in base 10. Remember,
the hex digit f has a decimal (base 10) value of 15.

To represent a hex constant in C, preceded it by the
characters “0x”. The constant 0xff has a decimal
value of 255. The constant 0xFF also has a decimal
value of 255. C doesn’t distinguish between upper and
lower case when representing hex digits.

Struct Arrays
Just as you can declare an array of chars or ints,
you can also declare an array of structs:

#define kMaxCDs 5000

struct CDInfo myCDs[kMaxCDs];

This declaration creates an array of 5,000 structs
of type CDInfo. The array is named myCDs. Each

196

Chapter 9:
Design Your Own
Data Structures

of the 5,000 structs will have the three fields
rating, artist, and title. You access the
fields of the structs as you might expect. Here’s
an example (Note the use of the all-important .
operator):

myCDs[10].rating = 9;

We now have an equivalent to our first CD tracking
data structure. Where the first model used three
arrays, we now have a solution that uses a single
array. As you’ll see when you start writing your own
programs, packaging your data in a struct makes
life a bit simpler. Instead of passing three parameters
each time you need to pass a CD to a function, you
can simply pass a struct.

From a memory standpoint, both CD tracking
solutions cost the same. With three separate arrays,
the cost is:

 5,000 bytes /*rating array*/
5,000 * 256 = 1,280,000 bytes /*artist array*/
5,000 * 256 = 1,280,000 bytes /*title array*/

Total 2,565,000 bytes

With an array of structs, the cost is:

5,000 * 513 = 2,565,000 bytes /* Cost of
array of 5,000 CDInfo structs */

So what can we do to cut this memory cost down?
Thought you’d never ask!

197

Chapter 9:
Design Your Own
Data Structures

Allocating Your Own Memory
One of the limitations of an array-based CD-tracking
model is that arrays are not resizable. When you
define an array, you have to specify exactly how many
elements make up your array.

For example, this code defines an array of 5,000
CDInfo structs.

#define kMaxCDs 5000

struct CDInfo myCDs[kMaxCDs];

As we calculated earlier, this array will take up
2,565,000 bytes of memory, whether we use the
array to track CD or 5,000. If you know in advance
exactly how many elements your array requires,
arrays are just fine. In the case of our CD-tracking
program, this just isn’t practical. For example, if my
CD collection consists entirely of a test CD that came
with my CD burner and a rare soundtrack recording
of Gilligan’s Island outtakes, a 5,000 struct array
is overkill. Even worse, what happens if I’ve got more
than 5,000 CDs? No matter what number I pick for
kMaxCDs, there’s always the chance that it won’t
prove large enough.

The problem here is that arrays are just not flexible
enough to do what we want. Instead of trying to
predict the amount of memory we’ll need in advance,
what we need is a method that will give us a chunk of
memory the exact size of a CDInfo struct, as we

need it. In more technical terms, we need to allocate
and manage our own memory.

When your program starts running, your operating
system (Mac OS X, Unix, and Windows XP are all
examples of operating systems) carves out a chunk of
memory for the exclusive use of your application.

Some of this memory is used to hold the object
code that makes up your application. Still more
of it is used to hold things like your application’s
global variables. As your application runs, some of
this memory will be allocated to main()’s local
variables. When main() calls a function, memory
is allocated for that function’s local variables. When
that function returns, the memory allocated for
its local variables is freed up, made available to be
allocated all over again.

In the next few sections, you’ll learn about some
functions you can call to allocate a block of memory
and to free the memory (to return it to the pool of
available memory). Ultimately, we’ll combine these
functions with a data structure called a linked list
to provide a more memory efficient, more flexible
alternative to the array.

malloc()
The Standard Library function malloc() allows
you to to allocate a block of memory of a specified
size. To access malloc(), you’ll need to include the
file <stdlib.h>:

198

Chapter 9:
Design Your Own
Data Structures

#include <stdlib.h>

malloc() takes a single parameter, the size of
the requested block, in bytes. malloc() returns
a pointer to the newly allocated block of memory.
Here’s the function prototype:

void *malloc(size_t size);

Note that the parameter is declared to be of type
size_t, the same type returned by sizeof. Think
of size_t as equivalent to an unsigned long
(unsigned in that it only takes on positive values,
and the size of a long). Note also that malloc()
returns the type (void *), a pointer to a void. A
void pointer is essentially a generic pointer. Since
there’s no such thing as a variable of type void, the
type (void *) is used to declare a pointer to a block
of memory whose type has not been determined.

In general, you’ll convert the (void *) returned by
malloc() to the pointer type you really want. Read
on to see an example of this.

If malloc() can’t allocate a block of memory the
size you requested, it returns a pointer with the value
NULL. NULL is a constant, usually defined to have a
value of 0, used to specify an invalid pointer. In other
words, a pointer with a value of NULL does not point

to a legal memory address. You’ll learn more about
NULL and (void *) as we use them in our examples.

Here’s a code fragment that allocates a single
CDInfo struct:

struct CDInfo *myCDPtr;

myCDPtr = malloc(sizeof(struct CDInfo));

The first line of code declares a new variable,
myCDPtr, which is a pointer to a CDInfo
struct. At this point, myCDPtr doesn’t point to
a CDInfo struct. You’ve just told the compiler
that myCDPtr is designed to point to a CDInfo
struct.

The second line of code calls malloc() to create
a block of memory the size of a CDInfo struct.
sizeof returns its result as a size_t, the type
we need to pass as a parameter to malloc(). How
convenient!

199

Chapter 9:
Design Your Own
Data Structures

On the right side of the = operator we’ve got a
(void *) and on the left side we’ve got a (struct
CDInfo *). The compiler automatically resolves this
type difference for us. We could have used a typecast
here to make this more explicit:

myCDPtr = (struct CDInfo *)malloc(
sizeof(struct CDInfo));

This explicit typecast really isn’t necessary and,
besides, we won’t get into typecasting until Chapter
11!

If malloc() was able to allocate a block of memory
the size of a CDInfo struct, myCDPtr contains
the address of the first byte of this new block. If
malloc() was unable to allocate our new block
(perhaps there wasn’t enough unallocated memory
left) myCDPtr will be set to NULL.

if (myCDPtr == NULL)
 printf(“Couldn’t allocate the new block!\n”
);

else
 printf(“Allocated the new block!\n”);

If malloc() succeeded, myCDPtr points to a
struct of type CDInfo. For the duration of the
program, we can use myCDPtr to access the fields of
this newly allocated struct:

myCDPtr->rating = 7;

It is important to understand the difference between
a block of memory allocate using malloc() and a
block of memory that corresponds to a local variable.
When a function declares a local variable, the
memory associated with that variable is temporary.
As soon as the function exits, the block of memory
associated with that memory is returned to the pool
of available memory.

A block of memory that you allocate using
malloc() sticks around until you specifically
return it to the pool of available memory or until
your program exits.

free()
The Standard Library provides a function, called
free(), which returns a previously allocated block
of memory back to the pool of available memory.
Here’s the function prototype:

void free(void *ptr);

free() takes a single argument, a pointer to the
first byte of a previously allocated block of memory.
This line:

free(myCDPtr);

returns the block allocated earlier to the free memory
pool. Use malloc() to allocate a block of memory.

200

Chapter 9:
Design Your Own
Data Structures

Use free() to free up a block of memory allocated
via malloc(). When a program exits, the operating
system automatically frees up all memory allocated
by that program.

Caution: Never put a fork in an electrical outlet. Never
pass an address to free() that didn’t come from
malloc(). Both will make you extremely unhappy!

Keep Track of That Address!
The address returned by malloc() is critical. If you
lose it, you’ve lost access to the block of memory you
just allocated. Even worse, you can never free()
the block, and it will just sit there, wasting valuable
memory, for the duration of your program.

One great way to lose a block’s address is to call
malloc() inside a function, saving the address
returned by malloc() in a local variable. When the
function exits, your local variable goes away, taking
the address of your new block with it!

One way to keep track of a newly allocated block of
memory is to place the address in a global variable.
Another way is to place the pointer inside a special
data structure known as a linked list.

Working With Linked Lists
The linked list is one of the most widely used data
structures in C. A linked list is a series of structs,
each of which contains, as a field, a pointer. Each
struct in the series uses its pointer to point to the
next struct in the series. Figure 9.5 shows a linked
list containing three elements.

Master
Pointer

Figure 9.5 A linked list containing 3 elements.

A linked list starts with a master pointer. The master
pointer is a pointer variable, typically a global, that
points to the first struct in the list. This first
struct contains a field, also a pointer, which points
to the second struct in the linked list. The second
struct contains a pointer field that points to the
third element. The linked list in Figure 9.5 ends
with the third element. The pointer field in the last
element of a linked list is typically set to NULL.

The notation used at the end of the linked list in
Figure 9.5 is borrowed from our friends in electrical
engineering. The funky three line symbol at the end
of the last pointer represents a NULL pointer.

201

Chapter 9:
Design Your Own
Data Structures

Why Linked Lists?
Linked lists allow you to be extremely memory
efficient. Using a linked list, you can implement our
CD-tracking data structure, allocating exactly the
number of structs that you need. Each time a
CD is added to your collection, you’ll allocate a new
struct and add it to the linked list.

A linked list starts out as a single master pointer.
When you want to add an element to the list, call
malloc() to allocate a block of memory for the
new element. Next, make the master pointer point
to the new block. Finally, set the new block’s next
element pointer to NULL.

Creating a Linked List
The first step in creating a linked list is the design
of the main link, the linked list struct. Here’s a
sample:

#define kMaxArtistLength 256
#define kMaxTitleLength 256

struct CDInfo
{
 char rating;
 char artist[kMaxArtistLength];
 char title[kMaxTitleLength];
 struct CDInfo *next;
}

The change here is the addition of a fourth field, a

pointer to a CDInfo struct. The next field is the
key to connecting two different CDInfo structs
together. If myFirstPtr is a pointer to one
CDInfo struct and mySecondPtr is a pointer to
a second struct, this line:

myFirstPtr->next = mySecondPtr;

connects the two structs together. Once they are
connected, you can use a pointer to the first struct
to access the second struct’s fields! For example:

myFirstPtr->next->rating = 7;

This line sets the rating field of the second
struct to 7. Using the next field to get from one
struct to the next is also known as traversing a
linked list.

Our next (and final) program for this chapter will
incorporate the new version of the CDInfo struct
to demonstrate a more memory-efficient CD-
tracking program. This program is pretty long, so you
may want to take a few moments to let the dog out
and answer your mail.

202

Chapter 9:
Design Your Own
Data Structures

There are many variants of the linked list. If you
connect the last element of a linked list to the first
element, you create a never-ending circular list. You
can add a prev field to the struct and use it to
point to the previous element in the list (as opposed
to the next one). This technique allows you to traverse
the linked list in two directions and creates a doubly-
linked list.

As you gain more programming experience, you’ll
want to check out some books on data structures.
Three books well worth exploring are Algorithms in C,
Parts 1-5 by Robert Sedgewick, Data Structures and C
Programs by Christopher J. Van Wyk and, my personal
favorite, Volume 1 of Donald Knuth’s Computer
Science Series (subtitled Fundamental Algorithms).

cdTracker.xcode
cdTracker implements Model B of our CD-
tracking system. It uses a text-based menu, allowing
you to quit, add a new CD to the collection, or list all
of the currently tracked CDs.

Open the Learn C Projects folder, go inside the folder
09.04 - cdTracker, and open the project cdTracker.
xcode. Run cdTracker. The console window will
appear, showing the prompt:

Enter command (q=quit, n=new, l=list):

At this point you have three choices. You can type a

q, followed by a carriage return, to quit the program.
You can type an n, followed by a carriage return, to
add a new CD to your collection. Finally, you can
type an l, followed by a carriage return, to list all the
CDs in your collection.

Start by typing an l, followed by a carriage return.
You should see the message:

No CDs have been entered yet...

Next, the original command prompt should
reappear:

Enter command (q=quit, n=new, l=list):

This time type an n, followed by a carriage return.
You will be prompted for the artist’s name and the
title of a CD you’d like added to your collection:

Enter Artist’s Name: Frank Zappa
Enter CD Title: Anyway the Wind Blows

Next, you’ll be prompted for a rating for the new CD.
The program expects a number between and 0.
Try typing something unexpected, such as the letter
x, followed by a carriage return:

203

Chapter 9:
Design Your Own
Data Structures

Enter CD Rating (1-10): x
Enter CD Rating (1-10): 10

The program checks your input, discovers it isn’t
in the proper range, and repeats the prompt. This
time, type a number between and 0, followed by a
carriage return. The program returns you to the main
command prompt:

Enter command (q=quit, n=new, l=list):

Type the letter l, followed by a carriage return. The
single CD you just entered will be listed and the
command prompt will again be displayed:

Artist: Frank Zappa
Title: Anyway the Wind Blows
Rating: 10

Enter command (q=quit, n=new, l=list):

Type an n, followed by a carriage return and enter
another CD. Repeat the process one more time,
adding a third CD to the collection. Now enter the
letter l, followed by a carriage return to list all three
CDs. Here’s my list:

Enter command (q=quit, n=new, l=list): l

Artist: Frank Zappa
Title: Anyway the Wind Blows
Rating: 10

Artist: Duke Ellington
Title: Never No Lament
Rating: 8

Artist: Jane Siberry
Title: Bound by the Beauty
Rating: 9

Enter command (q=quit, n=new, l=list):

Finally, enter a q, followed by a carriage return to
quit the program. Let’s hit the source code.

Stepping Through the Source Code
main.c starts by including four different files.
<stdio.h> gives us access to routines like
printf(), getchar(), and fgets().
<stdlib.h> gives us access to malloc()
and free(). <string.h> gives us access to
strlen().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

204

Chapter 9:
Design Your Own
Data Structures

The third include file is our own “cdTracker.h”.
“cdTracker.h” starts off with three #defines
that you should know pretty well by now.

/***********/
/* Defines */
/***********/
#define kMaxArtistLength 256
#define kMaxTitleLength 256

As you make your way through the cdTracker
source code, you’ll notice we’ve added some
decorative comments used to mark the beginning
of a section of code. For example, in cdTracker.h,
we’ve added comments to mark off areas for defines,
struct declarations, and function prototypes.

In main.c, we’ve done something similar to set off
the beginning of each function. You should do this in
your own code. It’ll make your code easier to read.

Next comes the new and improved CDInfo
struct declaration.

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
 char rating;
 char artist[kMaxArtistLength];
 char title[kMaxTitleLength];
 struct CDInfo *next;

} *gFirstPtr, *gLastPtr;

Notice the two variables hanging off the end of this
struct declaration. This is a shorthand declaration
of two globals, each of which is a pointer to a
CDInfo struct. We’ll use these two globals to
keep track of our linked list.

gFirstPtr will always point to the first struct
in the linked list. gLastPtr will always point to the
last struct in the linked list. We’ll use gFirstPtr
when we want to step through the linked list, starting
at the beginning. We’ll use gLastPtr when we
want to add an element to the end of the list. As long
as we keep these pointers around, we’ll have access to
the linked list of memory blocks we’ll be allocating.

205

Chapter 9:
Design Your Own
Data Structures

We could have split this declaration into two parts,
like this:

struct CDInfo

{

char rating;

char artist[kMaxArtistLength + 1];

char title[kMaxTitleLength + 1];

struct CDInfo *next;

};

struct CDInfo

*gFirstPtr, *gLastPtr;

Either form is fine, though the shorthand version
in cdTracker.h does a better job of showing that
gFirstPtr and gLastPtr belong with the
CDInfo struct declaration.

cdTracker.h ends with a series of function prototypes:

/***********************/
/* Function Prototypes */
/***********************/
char GetCommand(void);
struct CDInfo *ReadStruct(void);
void AddToList(struct CDInfo *curPtr);
void ListCDs(void);
void Flush(void);

Let’s get back to main.c. main() defines a char
named command which will be used to hold the
single-letter command typed by the user.

/***
***> main <*/

int main (int argc, const char * argv[])
{
 char command;

Next, the variables gFirstPtr and gLastPtr
are set to a value of NULL. As defined earlier, NULL
indicates that these pointers do not point to valid
memory addresses. Once we add an item to the list,
these pointers will no longer be NULL.

 gFirstPtr = NULL;
 gLastPtr = NULL;

Next, main() enters a while loop, calling the
function GetCommand(). GetCommand()
prompts you for a one-character command, either a
‘q’, ‘n’, or ‘l’. Once GetCommand() returns
a ‘q’, we drop out of the while loop and exit the
program.

 while ((command = GetCommand()) != ‘q’)
 {

206

Chapter 9:
Design Your Own
Data Structures

If GetCommand() returns an ‘n’, the user
wants to enter information on a new CD. First we
call ReadStruct(), which allocates space for a
CDInfo struct, then prompts the user for the
information to place in the new struct’s fields.
Once the struct is filled out, ReadStruct()
returns a pointer to the newly allocated struct.

The pointer returned by ReadStruct() is passed
on to AddToList(), which adds the new struct
to the linked list.

 switch(command)
 {
 case ‘n’:
 AddToList(ReadStruct());
 break;

If GetCommand() returns an ‘l’, the user wants
to list all the CDs in his or her collection. That’s what
the function ListCDs() does.

 case ‘l’:
 ListCDs();
 break;
 }
 }

Before the program exits, it says “Goodbye...”.

 printf(“Goodbye...”);

 return 0;
}

Next up on the panel is GetCommand().
GetCommand() declares a char named command,
used to hold the user’s command.

/***>
GetCommand <*/

char GetCommand(void)
{
 char command;

Because we want to execute the body of this next
loop at least once, we used a do loop instead of a
while loop. We’ll first prompt the user to enter a
command, then use scanf() to read a character
from the input buffer. The function Flush() will
read characters, one at a time, from the input buffer
until it reads in a carriage return. If we didn’t call
Flush(), any extra characters we typed after the
command (including the ‘\n’) would be picked up
the next time through this loop and extra prompt
lines would appear, one per extra character. To see
this effect, comment out the call to Flush() and
type more than one character when prompted for a
command.

207

Chapter 9:
Design Your Own
Data Structures

 do
 {
 printf(“Enter command (q=quit, n=new,
l=list): “);

 scanf(“%c”, &command);
 Flush();
 }
 while ((command != ‘q’) && (command != ‘n’)
 && (command != ‘l’)
);

We’ll drop out of the loop once we get either a ‘q’,
an ‘n’, or an ‘l’.

Here’s a cool trick Keith Rollin (C guru extraordinaire)
showed me. Instead of ending the do loop with this
statement:

while ((command != ‘q’) && (command !=
‘n’) && (command != ‘l’));

try this code instead:

while (! strchr(“qnl”, command));

strchr() takes two parameters: a 0 terminated
string and an int containing a character. It searches
the string for the character and returns a pointer to
the character inside the string, if it was found. If the
character wasn’t in the string, strchr() returns
NULL. Pretty cool, eh?

Once we drop out of the loop, we’ll print a separator
line and return the single-letter command.

 printf(“\n----------\n”);
 return(command);
}

Next up is ReadStruct(). Notice the unusual
declaration of the function name.

/***>
ReadStruct <*/

struct CDInfo *ReadStruct(void)
{

This line says that ReadStruct() returns a pointer
to a CDInfo struct:

struct CDInfo *ReadStruct(void)

ReadStruct() uses malloc() to allocate a
block of memory the size of a CDInfo struct. The
variable infoPtr will act as a pointer to the new
block. We’ll use the variable num to read in the rating
which we’ll eventually store in infoPtr->rating.
result is a dummy variable we’ll never really make
use of. It exists because we needed a variable to catch
the value returned by fgets(). Since fgets()
also puts the same value in one of its parameters, we
won’t need the value returned to result.

208

Chapter 9:
Design Your Own
Data Structures

 struct CDInfo *infoPtr;
 int num;
 char *result;

ReadStruct() calls malloc() to allocate a
CDInfo struct, assigning the address of the block
returned to infoPtr.

 infoPtr = malloc(sizeof(struct CDInfo));

If malloc() cannot allocate a block of the
requested size, it will return a value of NULL. If this
happens, we’ll print an appropriate message and call
the Standard Library function exit(). As its name
implies, exit() causes the program to immediately
exit.

 if (infoPtr == NULL)
 {
 printf(“Out of memory!!! Goodbye!\n”);
 exit(0);
 }

The parameter you pass to exit() will be passed
back to the operating system (or to whatever
program launched your program).

If we’re still here, malloc() must have succeeded.
Next, we’ll print a prompt for the CD artist’s name,

then call fgets() to read a line from the input
buffer. fgets() will place the line in the artist
field of the newly allocated struct.

 printf(“Enter Artist’s Name: “);
 result = fgets(infoPtr->artist,
kMaxArtistLength, stdin);

Earlier in the chapter (in multiArray), we
discovered that fgets() leaves the ‘\n’ in place
when it reads in a line of input. In this next line, we
use strlen() and the = operator to replace the ‘\
n’ with a terminating ‘\0’.

As a reminder of how this works, imagine that the
line typed in was “hello”, with a carriage return
acting as the sixth character in the string. This means
that infoPtr->artist[5] is the character that
needs to be replaced.

In this case, strlen(infoPtr->artist) returns 6 (the
characters “hello”plus the ‘\n’). We subtract
 to get 5. Now we’ll use the = operator to replace
the ‘\n’ at infoPtr->artist[5] with a
terminating ‘\0’.

 infoPtr->artist[strlen(infoPtr->artist) -
1] = ‘\0’;

We then repeat the process to prompt for and read in
the CD title.

209

Chapter 9:
Design Your Own
Data Structures

 printf(“Enter CD Title: “);
 result = fgets(infoPtr->title,
kMaxTitleLength, stdin);

 infoPtr->title[strlen(infoPtr->title) - 1
] = ‘\0’;

This loop prompts the user to enter a number
between and 0. We then use scanf() to read
an int from the input buffer. Note that we used a
temporary int to read in the number instead of
reading it directly into infoPtr->rating. We did
this because the %d format specifier expects an int
and rating is declared as a char. Once we read
the number, we call Flush() to get rid of any other
characters (including the ‘\n’).

 do

 {

 printf(“Enter CD Rating (1-10): “);

 scanf(“%d”, &num);

 Flush();

 }

 while ((num < 1) || (num > 10));

This do loop is not as careful as it could be. If
scanf() encounters an error of some kind, num
will end up with an undefined value. If that undefined
value happens to be between 1 and 10, the loop will
exit and an unwanted value will be entered in the
rating field. Though that might not be that big a
deal in our case, we probably would want to drop out
of the loop or, at the very least, print some kind of
error message if this happens.

Here’s another version of the same code:

do

{

 printf(“Enter CD Rating (1-10): “);

 if (scanf(“%d”, &num) != 1)

 {

 printf(“Error returned by
scanf()!\n”);

 exit(-1);

 };

 Flush();

}

while ((num < 1) || (num > 10));

210

Chapter 9:
Design Your Own
Data Structures

scanf() returns the number of items it read. Since
we’ve asked it to read a single int, this version prints
an error message and exits if we don’t read exactly
one item. This is a pretty simplistic error strategy, but
it does make a point. Pay attention to error conditions
and to function return values.

Once a number is read in that’s between and 0, the
number is assigned to the rating field of the newly
allocated struct.

 infoPtr->rating = num;

Finally, a separating line is printed and the pointer to
the new struct is returned.

 printf(“\n----------\n”);

 return(infoPtr);
}

AddToList() takes a pointer to a CDInfo
struct as a parameter. It uses the pointer to add
the struct to the linked list.

/***>
AddToList <*/

void AddToList(struct CDInfo *curPtr)
{

If gFirstPtr is NULL, the list must be empty. If so,
make gFirstPtr point to the new struct.

 if (gFirstPtr == NULL)
 gFirstPtr = curPtr;

If gFirstPtr is not NULL, there’s at least one
element in the linked list. In that case, make the
next field of the very last element on the list point
to the new struct.

 else
 gLastPtr->next = curPtr;

In either case, set gLastPtr to point to the new
“last element in the list.” Finally, make sure the next
field of the last element in the list is NULL. You’ll see
why we did this in the next function, ListCDs().

 gLastPtr = curPtr;
 curPtr->next = NULL;
}

ListCDs() lists all the CDs in the linked list. The
variable curPtr is used to point to the link element
currently being looked at.

211

Chapter 9:
Design Your Own
Data Structures

/***>
ListCDs <*/

void ListCDs(void)
{
 struct CDInfo *curPtr;

If no CDs have been entered yet, we’ll print an
appropriate message.

 if (gFirstPtr == NULL)
 {
 printf(“No CDs have been entered yet...\
n”);

 printf(“\n----------\n”);
 }

Otherwise we’ll use a for loop to step through the
linked list. The for loop starts by setting curPtr
to point to the first element in the linked list and
continues as long as curPtr is not NULL. Each time
through the loop, curPtr is set to point to the next
element in the list. Since we make sure that the last
element’s next pointer is always set to NULL, When
curPtr is equal to NULL, we know we have been
through every element in the list and we are done.

 else
 {
 for (curPtr=gFirstPtr; curPtr!=NULL;
curPtr = curPtr->next)

 {

The first two printf()s use the “%s” format
specifier to print the strings in the fields artist
and title.

 printf(“Artist: %s\n”, curPtr->artist);
 printf(“Title: %s\n”, curPtr->title);

Next, the rating field and a separating line are
printed and it’s back to the top of the loop.

 printf(“Rating: %d\n”, curPtr->rating);

 printf(“\n----------\n”);
 }
 }
}

Flush() uses getchar() to read characters from
the input buffer until it reads in a carriage return.
Flush() is a good utility routine to have around.

/***>
Flush <*/

void Flush(void)
{
 while (getchar() != ‘\n’)
 ;
}

212

Chapter 9:
Design Your Own
Data Structures

Flush() was based on the Standard Library
function fflush(). fflush() flushes the input
buffer associated with a specific file. Since we haven’t
gotten into files yet, we wrote our own version,
though as you can see, it wasn’t that hard.

What’s Next?
This chapter covered a wide range of topics,
from #includes to linked lists. The intent of
the chapter, however, was to attack a real-world
programming problem; in this case, a program to
catalog CDs. The chapter showed several design
approaches, discussing the pros and cons of each.
Finally, the chapter presented a prototype for a CD-
tracking program. The program allows you to enter
information about a series of CDs and, on request,
will present a list of all the CDs tracked.

One problem with this program is that once you exit,
all of the data you entered is lost. The next time you
run the program, you have to start all over again.

Chapter 0 offers a solution to this problem. The
chapter introduces the concept of files and file
management, showing you how to save your data
from memory out to your hard-disk drive and how
to read your data back in again. The chapter updates
cdTracker, storing the CD information collected
in a file on your disk drive.

213

Chapter 9:
Design Your Own
Data Structures

Exercises
) What’s wrong with each of the following code

fragments:

 a)
 struct Employee
 {
 char name[20];
 int employeeNumber
 };

 b)
 while (getchar() == ‘\n’) ;

 c)
 #include “stdio.h”

 d)
 struct Link
 {
 name[50];
 Link *next;
 };

 e)
 struct Link
 {
 struct Link next;
 struct Link prev;
 }

 f)
 StepAndPrint(char *line)
 {
 while (*line != 0)
 line++;

 printf(“%s”, line);
 }

2) Update cdTracker so it maintains its linked
list in order from the lowest rating to the highest
rating. If two CDs have the same rating, the order
is unimportant.

3) Update cdTracker, adding a prev field to
the CDInfo struct so it maintains a doubly-
linked list. As before, the next field will point to
the next link in the list. Now, however, the prev
field should point to the previous link in the list.
Add an option to the menu that prints the list
backward, from the last struct in the list to the
first.

C
Chapter 10 Working with Files

214

hapter 9 introduced cdTracker, a program designed
to keep track of your compact disc collection.
cdTracker allowed you to enter a new CD,
as well as list all existing CDs. cdTracker’s
biggest shortcoming was that it didn’t save the CD
information when it exited. If you ran cdTracker,
entered information on ten CDs, and then quit, your
information would be gone. The next time you ran
cdTracker, you’d have to start from scratch.

The solution to this problem is to somehow save
all of the CD information before you quit the
program. This chapter will show you how. Chapter 0
introduces the concept of files, the long-term storage
for your program’s data.

As you move on to other programming languages
(such as Objective-C, Java, or C++), sophisticated
development toolkits (such as Cocoa), and even other
Operating Systems, you’ll find there are many ways
to work with files. Most of them are based on the
concepts you’ll learn in this chapter.

Stay with the program! Learn the basics and you’ll
find moving on to other development platforms
much, much easier in the long run.

215

Chapter 10:
Working
with Files

What is a File?
A file is a series of bytes residing in some storage
media. Files can be stored on your hard drive, on a
recordable CD or DVD, or even on your iPod. The
iTunes application is made up of a collection of files,
including the actual executable, the preference files,
and all the song files. Your favorite word processor
lives in a file, and so does each and every document
you create with your word processor.

The project archive that came with this book
contains many different files. Apple’s developer tools
are made up of hundreds of files. Each of the Learn
C projects consists of at least two files: a project file
and at least one source code file. When you compile
and link a project, you produce a new kind of file, an
application file.

All of these are examples of the same thing: a
collection of bytes known as a file.

All of the files on your computer share a common
set of traits. For example, each file has a size. The file
main.c from the cdTracker project has a size of
2,425 bytes. The main.c from multiArray was only
93 bytes. Each of these files resides on my Mac’s
internal hard drive.

Working With Files, Part One
In the C world, each file consists of a stream of
consecutive bytes. When you want to access the
data in a file, you first open the file using a Standard
Library function named fopen(), pronounced eff-
open. Once your file is open, you can read data from
the file or write new data back into the file using
Standard Library functions like fscanf() and
fprintf(). Once you are done working with your
file, you’ll close it using the Standard Library function
fclose().

Opening and Closing a File
Here’s the function prototype for fopen(), found in
the file <stdio.h>:

FILE *fopen(const char *name, const char
*mode);

216

Chapter 10:
Working
with Files

The const keyword marks a variable or parameter
as read-only. In other words, fopen() is not
allowed to modify the array of characters pointed at
by name or mode. Here’s another example:

const int

myInt = 27;

This declaration creates an int named myInt and
assigns it a value of 27 (we’ll talk about definitions
that also initialize in Chapter 11). More importantly,
the value of myInt is now permanently set. myInt
is now read-only. As long as myInt remains in scope,
you can’t change its value.

The first parameter, name, tells fopen() which file
you want to open. For example, the file name “My
Data File” tells fopen() to look in the current
folder (the folder containing the currently running
application) for a file named My Data File.

The “/” (slash), “.” (dot), and “~” (tilde) characters
have a special meaning when naming Unix and Mac
OS X files. The “.” refers to the current folder, the “/” is
a directory separator, and the “~” specifies your home
directory.

For example, if I wanted to refer to the file “My Data
File” in the current directory, I’d use the string
“./My Data File”. The string “/My Data
File” refers to the file named “My Data File”
at the very top level of your hard drive. This top level
is also known as the root level of your hard drive.

Two dots in a row refer to the parent directory of
the current directory. So the string “../My Data
File” refers to the file named “My Data File”
one level up from the current directory.

The string “~/My Data File” refers to the file
named “My Data File” in your home directory.
On my Mac, my home directory is the directory /
Users/davemark.

As you make your way through the programs in this
chapter, play with the file names till you understand
these concepts.

 The second parameter, mode, tells fopen() how
you’ll be accessing the file. The three basic file modes
are “r”, “w”, and “a”, which stand for read, write,
and append, respectively.

“r” tells fopen() that you want to read data from
the file and that you won’t be writing to the file at all.
The file must already exist in order to use this mode.

217

Chapter 10:
Working
with Files

In other words, you can’t use the mode “r” to create
a file.

The mode “w” tells fopen() that you want to write
to the specified file. If the file doesn’t exist yet, a new
file with the specified name is created. If the file does
exist, fopen() deletes it and creates a new empty
file for you to write into.

This last point bears repeating. Calling fopen()
with a mode of “w” will delete a file’s contents if the
file already exists, essentially starting you over from
the beginning of the file. Be careful!

The mode “a” is similar to “w”. It tells fopen()
that you want to write to the specified file and to
create the file if it doesn’t exist. If the file does exist,
however, the data you write to the file is appended to
the end of the file.

If fopen() successfully opens the specified file,
it allocates a struct of type FILE and returns a
pointer to the FILE struct. The FILE struct
contains information about the open file, including
the current mode (“r”, “w”, “a” or whatever) as
well as the current file position. The file position is
a pointer into the file that acts like a bookmark in a
book. When you open a file for reading, for example,
the file position points to the first byte in the file.
When you read the first byte, the file position moves
to the next byte.

It’s not really important to know the details of the

FILE struct. All you need to do is keep track of
the FILE pointer returned by fopen(). By passing
the pointer to a Standard Library function that reads
or writes, you’ll be sure the read or write takes place
in the right file and at the right file position. You’ll
see how all this works as we go through the chapter
sample code.

Here’s a sample fopen() call:

FILE *fp;

if ((fp = fopen(“My Data File”, “r”)) ==
NULL)

{
 printf(“File doesn’t exist!!!\n”);
 exit(1);
}

This code first calls fopen(), attempting to open
the file named “My Data File” for reading. If
fopen() cannot open the file for some reason
(perhaps you’ve asked it to open a file that doesn’t
exist or you’ve already opened the maximum number
of files - see the next tech block), it returns NULL. In
that case, we’ll print an error message and exit.

There is a limit to the number of simultaneous
open files. This limit is implemented as a constant,
FOPEN_MAX, defined in the file <stdio.h>.

If fopen() does manage to open the file, it will

218

Chapter 10:
Working
with Files

allocate the memory for a FILE struct, and
fp will point to that struct. We can then pass
fp to routines that read from the file. Once we’re
done with the file, we’ll pass fp to the function
fclose():

int fclose(FILE *stream);

fclose() takes a pointer to a FILE as a parameter
and attempts to close the specified file. If the file
is closed successfully, fclose() frees up the
memory allocated to the FILE struct and returns
a value of 0. It is very important that you match
every fopen() with a corresponding fclose(),
otherwise you’ll end up with unneeded FILE
structs floating around in memory.

In addition, once you’ve passed a FILE pointer to
fclose(), that FILE pointer no longer points to a
FILE struct. If you want to access the file again,
you’ll have to make another fopen() call.

If fclose() fails, it returns a value of -1. Many
programmers ignore the value returned by
fclose(), since there’s not a whole lot you can
do about it. On the other hand, you can never have
too much error checking in your code, so you might
consider checking the value returned by fclose()
and, at the very least, printing an appropriate error
message if fclose() fails.

Reading a File
Once you open a file for reading, the next step
is to read data from the file. There are several
Standard Library functions to help you do just
that. For starters, the function fgetc() reads a
single character from a file’s input buffer. Here’s the
function prototype:

int fgetc(FILE *fp);

The single parameter is the FILE pointer returned
by fopen(). fgetc() reads a single character
from the file and advances the file position pointer.
If the file position pointer is already at the end of the
file, fgetc() returns the constant EOF.

219

Chapter 10:
Working
with Files

Though fgetc() returns an int, a line like this:

char c;

c = fgetc(fp);

works just fine. When the C compiler encounters
two different types on each side of an assignment
operator, it does its best to convert the value on the
right side to the type of the left side before doing the
assignment. As long as the type of the right side is
no larger than the type of the left side (as is the case
here: an int is at least as large as a char) this won’t
be a problem.

We’ll get into the specifics of typecasting in Chapter
11.

The function fgets(), which we made use of in
Chapter 9, reads a series of characters into an array
of chars. Here’s the function prototype:

char *fgets(char *s, int n, FILE *fp);

The first parameter is a pointer to an array of chars
that you’ve already allocated. Don’t just declare
a (char *) and pass it in to fgets(). Instead,
allocate an array of chars large enough to hold the
largest block of chars you might end up reading
in, then pass a pointer to that array as the first
parameter (you’ll see an example in a second).

The second parameter is the maximum number of

characters you’d like to read. fgets() stops reading
once it reads in n-1 chars, or if it encounters an
end-of-file or a ‘\n’ before it reads n-1 chars. If
fgets() successfully reads n-1 chars, it appends
a 0 terminator to the char array (that’s why the
array has to be at least n chars in size).

If fgets() encounters a ‘\n’ before it reads n-1
chars, it stops reading after the ‘\n’ is read, then
adds the 0 terminator to the array, right after the ‘\
n’.

If fgets() encounters an end-of-file before it reads
n-1 chars, it adds the 0 terminator to the array,
right after the last character read.

If fgets() encounters an end-of-file before it reads
in any chars, it returns NULL. Otherwise, fgets()
returns a pointer to the char array.

Finally, the third parameter is the FILE pointer
returned by fopen().

Here’s an example:

#define kMaxBufferSize 200

FILE *fp;
char buffer[kMaxBufferSize];

if ((fp = fopen(“My Data File”, “r”)) ==
NULL)

{
 printf(“File doesn’t exist!!!\n”);
 exit(1);
}

220

Chapter 10:
Working
with Files

if (fgets(buffer, kMaxBufferSize, fp) ==
NULL)

{
 if (feof(fp))
 printf(“End-of-file!!!\n”);
 else
 printf(“Unknown error!!!\n”);
}
else
 printf(“File contents: %s\n”, buffer);

Notice that the example calls a function named
feof() if fgets() returns NULL. fgets()
returns NULL no matter what error it encounters.
feof() returns true if the last read on the
specified file resulted in an end-of-file, false
otherwise.

The function fscanf() is similar to scanf(),
reading from a file instead of the keyboard. Here’s the
prototype:

int fscanf(FILE *fp, const char* format, ...
);

The first parameter is the FILE pointer returned
by fopen(). The second parameter is a format
specification embedded inside a character string. The
format specification tells fscanf() what kind of
data you want read from the file. The ... operator
in a parameter list tells the compiler that 0 or more
parameters may follow the second parameter. Like

scanf() and printf(), fscanf() uses the
format specification to determine the number of
parameters it expects to see. Be sure to pass the
correct number of parameters or your program will
get confused.

These are a few of the file access functions provided
by the Standard Library. Wanna look up something?
Here’s that link to that online Standard Library
reference I keep mentioning:

http://www.infosys.utas.edu.au/info/
documentation/C/CStdLib.html

Click on the link to <stdio.h> at the top of the
page. You might also want to take a look at C, A
Reference Manual by Harbison and Steele and check
out Chapter 5, entitled “Input/Output Facilities”.

In the meantime, here’s an example that uses the
functions fopen() and fgetc() to open a file and
display its contents.

printFile.xcode
printFile opens a file named My Data File, reads
in all the data from the file, one character at a time,
and prints each character in the console window.

Open the Learn C Projects folder, go inside the
folder 0.0 - printFile, and open and run the project
printFile.xcode. Compare your output with the

http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html
http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html

221

Chapter 10:
Working
with Files

console window shown in Figure 0.. They should be
the same.

Figure 0. The printFile output, showing the
contents of the file My Data File.

Let’s take a look at the data file read in by
printFile. Select Open... from Xcode’s File menu.
Xcode will prompt you for a text file to open. Be sure
you are in the 0.0 - printFile directory and select
the file named My Data File. An editing window will
open allowing you to edit the contents of My Data
File. Feel free to make some changes to the file and
run the program again. Make sure you don’t change
the name or the location of the file.

Let’s take a look at the source code.

Stepping Through the Source Code
Open the source code file main.c by double-clicking
on its name in the project window. Take a minute to
look over the source code. Once you feel comfortable
with it, read on.

main.c starts off with the usual #include.

#include <stdio.h>

main() defines two variables. fp is our FILE
pointer, and c is an int that will hold the chars we
read from the file.

int main (int argc, const char * argv[])
{
 FILE *fp;
 int c;

This call of the function fopen() opens the file
named My Data File for reading, returning the file
pointer to the variable fp.

 fp = fopen(“../My Data File”, “r”);

222

Chapter 10:
Working
with Files

Notice the “../” in the beginning of the file name we
passed to fopen(). As described earlier, the “../”
means that the file is in the parent directory, one level
up from the application. But wait. The file My Data File
is in the same directory as the project file. What gives?

This behavior is specific to the way applications
are built under Mac OS X. Though an application
might look like a single file, it really is a directory
with a series of files embedded in it, including the
executable, all packaged together to look like a single
file. Since the executable is actually buried one level
deep within the package, we need to pop up one
level to find My Data File.

If we built this program as a Unix binary using the
Terminal app, we’d need to remove the “../” from
the beginning of the file name, since Unix apps do
not do the fakeout package trick.

Just thought you’d like to know.

If fp is not NULL, the file was opened successfully.

 if (fp != NULL)
 {

The while loop continuously calls fgetc(),
passing it the file pointer fp. fgetc() returns the
next character in fp’s input buffer. The returned
character is assigned to c. If c is not equal to EOF,
putchar() is called, taking c as a parameter.

 while ((c = fgetc(fp)) != EOF)
 putchar(c);

putchar() prints the specified character to the
console window. We could have accomplished the
same thing by using printf():

printf(“%c”, c);

As you program, you’ll often find two different
solutions to the same problem. Should you use
putchar() or printf()? If performance is
critical, pick the option that is more specific to your
particular need. In this case, printf() is designed
to handle many different data types. putchar() is
designed to handle one data type, an int. Chances
are the source code for putchar() is simpler and
more efficient than the source code for printf()
when it comes to printing an int. If performance is
critical, you might want to use putchar() instead
of printf(). If performance isn’t critical, go with
your own preference.

Once we are done, we’ll close the file by calling
fclose(). Remember to always balance each call of
fopen() with a corresponding call to fclose().

223

Chapter 10:
Working
with Files

 fclose(fp);
 }

 return 0;
}

stdin, stdout, and stderr
C provides you with three FILE pointers that are
always available and always open. stdin represents
the keyboard, stdout represents the console
window, and stderr represents the file where the
user wants all error messages sent. stdin, stdout,
and stderr are normally associated with command
line oriented operating systems like Unix and
DOS and are rarely used on the Macintosh, but it’s
definitely worth knowing about them.

In printFile, we used the function fgetc() to
read a character from a previously opened file. This
line:

c = fgetc(stdin);

will read the next character from the keyboard’s
input buffer.

fgetc(stdin)

is equivalent to calling

getchar()

As you’ll see in the next few sections, whenever C
provides a mechanism for reading or writing to a file,
C will also provide a similar mechanism for reading
from stdin or writing to stdout.

224

Chapter 10:
Working
with Files

Working With Files, Part Two
So far, you’ve learned how to open a file using
fopen() and how to read from a file using
fgetc(). You’ve seen, once again, that you can
often use two different functions to solve the same
problem. Now let’s look at some functions that allow
you to write data out to a file.

Writing to a File
The Standard Library offers several functions that
write data out to a previously opened file. This
section will introduce three of them: fputc(),
fputs(), and fprintf().

fputc() takes an int holding a character value,
and writes the character out to the specified file.
fputc() is declared as follows:

int fputc(int c, FILE *fp);

If fputc() successfully writes the character out
to the file, it returns the value passed to it in the
parameter c. If the write fails for some reason,
fputc() returns the value EOF.

Note that:

fputc(c, stdout);

is the same as calling:

putchar(c);

fputs() is similar to fputc(), but writes out a
0-terminated string instead of a single character.
fputs() is declared as follows:

int fputs(const char *s, FILE *fp);

fputs() writes out all the characters in the string,
but does not write out the terminating 0. If the write
succeeds, fputs() returns a 0. If the write fails,
fputs() returns EOF.

fprintf() works just like printf(). Instead
of sending its output to the console window,
fprintf() writes its output to the specified file.
fprintf() is declared as follows:

int fprintf(FILE *fp, const char *format,
...);

The first parameter specifies the file to be written to.
The second is the format specification text string.
Any further parameters depend on the contents of
the format specification string.

225

Chapter 10:
Working
with Files

cdFiler.xcode
In Chapter 9, we ran cdTracker, a program
designed to help you track your CD collection. The
big shortcoming of cdTracker is its inability to
save your carefully entered CD data. As you quit
the program, the CD information you entered gets
discarded, forcing you to start over the next time you
run cdTracker.

Our next program, cdFiler, solves this problem
by adding two special functions to cdTracker.
ReadFile() opens a file named cdData, reads in
the CD data from the file, and uses the data to build
a linked list of cdInfo structs. WriteFile()
writes the linked list back out to the file.

Open the Learn C Projects folder, go inside the folder
0.02 - cdFiler, and open the project cdFiler.xcode.
Check out the cdFiler.xcode project window shown
in Figure 0.2. Notice that there are three separate
source code files (two .c files and one .h file). Your
project can contain as many source code files as you
like. Just make sure that only one of the files has a
function named main(), since that’s where your
program will start.

Figure 0.2 The cdFiler project window.

The file main.c is almost identical to the file main.c
from Chapter 9’s cdTracker program. The file files.
c contains the functions that allow cdFiler to read
and write the file cdData.

Exploring cdData
Before you run the program, use Xcode to take a
quick look at the file cdData. At first glance, the
contents of the file may not make much sense, but
the text does follow a well-defined pattern:

Frank Zappa
Anyway the Wind Blows
8
Edith Piaf
The Voice of the Sparrow

226

Chapter 10:
Working
with Files

10
Joni Mitchell
For the Roses
9

The file is organized in clusters of three lines each.
Each cluster contains a one-line CD artist, a one-line
CD title, and a one-line numerical CD rating.

The layout of your data files is as important a part
of the software design process as the layout of your
program’s functions. The file described above follows
a well-defined pattern. As you lay out a file for your
next program, think about the future. Can you live
with one-line CD titles? Do you want the ability to add
a new CD field, perhaps the date of the CD’s release?

The time to think about these types of questions is
at the beginning of your program’s life, during the
design phase.

Running cdFiler
Before you run cdFiler, close the cdData text-
editing window.

To create this window, Xcode had to open the file
cdData. If you don’t close the window before you run
the program, the file will remain open. When you run
cdFiler, it will also open the file. You’ll have the
same file open in two places. This is not a good idea.

Why? Suppose you make some changes to the file
in Xcode but don’t save your changes. Now you run
cdFiler and make some changes, with cdFiler
saving the changes. What happens if you go back to
Xcode and save your changes? Most likely, Xcode will
overwrite the changes you made using cdFiler
and the cdFiler changes will be lost. Not good!

Once the window is closed, run cdFiler. The
console window will appear, prompting you for a
‘q’, ‘n’, or ‘l’:

Enter command (q=quit, n=new, l=list): l

Type an l, followed by a carriage return. This will
list the CDs currently in the program’s linked list. If
you need a refresher on linked lists, now would be a
perfect time to turn back to Chapter 9.

Enter command (q=quit, n=new, l=list): l

Artist: Frank Zappa
Title: Anyway the Wind Blows
Rating: 8

Artist: Edith Piaf
Title: The Voice of the Sparrow
Rating: 10

227

Chapter 10:
Working
with Files

Artist: Joni Mitchell
Title: For the Roses
Rating: 9

Enter command (q=quit, n=new, l=list):

While Chapter 9’s cdTracker started with an
empty linked list, cdFiler starts with a linked list
built from the contents of the cdData file. The CDs
you just listed should match the CDs you saw when
you edited the cdData file.

Let’s add a fourth CD to the list. Type an ‘n’
followed by a carriage return:

Enter command (q=quit, n=new, l=list): n

Enter Artist’s Name: Adrian Belew
Enter CD Title: Mr. Music Head
Enter CD Rating (1-10): 8

Enter command (q=quit, n=new, l=list):

Next, type an ‘l’ to make sure your new CD made
it into the list:

Enter command (q=quit, n=new, l=list): l

Artist: Frank Zappa

Title: Anyway the Wind Blows
Rating: 8

Artist: Edith Piaf
Title: The Voice of the Sparrow
Rating: 10

Artist: Joni Mitchell
Title: For the Roses
Rating: 9

Artist: Adrian Belew
Title: Mr. Music Head
Rating: 8

Enter command (q=quit, n=new, l=list):

Finally, type a ‘q’ followed by a carriage return. This
causes the program to write the current linked list
back out to the file cdData. To prove this worked,
run cdFiler one more time. When prompted for a
command, type an ‘l’ to list your current CDs. You
should find your new CD nestled at the bottom of
the list. Let’s see how this works.

Stepping Through the Source Code
The file cdFiler.h contains source code that will be
included by both main.c and files.c. The first two
#defines should be familiar to you. The third
creates a constant containing the name of the file
containing our CD data.

228

Chapter 10:
Working
with Files

/***********/
/* Defines */
/***********/
#define kMaxArtistLength 256
#define kMaxTitleLength 256

#define kCDFileName “../cdData”

This CDInfo struct is identical to the one found
in cdTracker.

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
 char rating;
 char artist[kMaxArtistLength];
 char title[kMaxTitleLength];
 struct CDInfo *next;
};

Just as we did in cdTracker, we’ve declared two
globals to keep track of the beginning and end of our
linked list. The extern keyword at the beginning
of the declaration tells the C compiler to link this
declaration to the definition of these two globals,
which can be found in main.c. If you removed the
extern keyword from this line, the compiler would
first compile files.c, defining space for both pointers.
When the compiler went to compile main.c, it would
complain that these globals were already declared.

The extern mechanism allows you to declare
a global without actually allocating memory for
it. Since the extern declaration doesn’t allocate
memory for your globals, you’ll need another
declaration (usually found in the same file as
main()) that does allocate memory for the globals.
You’ll see that declaration in main.c.

/***********************/
/* Global Declarations */
/***********************/
 extern struct CDInfo *gFirstPtr, *gLastPtr;

Next comes the list of function prototypes. By
listing all the functions in this #include file, we
make all functions available to be called from all
other functions. As your programs get larger and
more sophisticated, you might want to create a
separate include file for each of your source code
files. Some programmers create one include file for
globals, another for defines, and another for function
prototypes.

/********************************/
/* Function Prototypes - main.c */
/********************************/
char GetCommand(void);
struct CDInfo *ReadStruct(void);
void AddToList(struct CDInfo *curPtr);
void ListCDs(void);
void ListCDsInReverse(void);
void Flush(void);

229

Chapter 10:
Working
with Files

/*********************************/
/* Function Prototypes - files.c */
/*********************************/
void WriteFile(void);
void ReadFile(void);
char ReadStructFromFile(FILE *fp, struct
CDInfo *infoPtr);

The file main.c is almost exactly the same as the file
main.c from Chapter 9’s cdTracker program.
There are four differences. First, we include the file
cdFiler.h instead of cdTracker.h.

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include “cdFiler.h”

Next, we include the definitions of our two globals
directly in this source code file, to go along with the
extern declarations in cdFiler.h. This definition is
where the memory actually gets allocated for these
two global pointers.

/***********************/
/* Global Definitions */
/***********************/
struct CDInfo *gFirstPtr, *gLastPtr;

main() contains the last two differences. Before

we enter the command processing loop, we call
ReadFile() to read in the cdData file and turn the
contents into a linked list.

/**************************> main <*/
int main (int argc, const char * argv[])
{
 char command;

 gFirstPtr = NULL;
 gLastPtr = NULL;

 ReadFile();

 while ((command = GetCommand()) != ‘q’)
 {
 switch(command)
 {
 case ‘n’:
 AddToList(ReadStruct());
 break;
 case ‘l’:
 ListCDs();
 break;
 }
 }

Once we drop out of the loop, we call
WriteFile() to write the linked list out to the file
cdData.

 WriteFile();

 printf(“Goodbye...”);

230

Chapter 10:
Working
with Files

 return 0;
}

For completeness, here’s the remainder of main.
c. Each of these functions are identical to their
cdTracker counterpart.

/*************************> GetCommand <*/
char GetCommand(void)
{
 char command;

 do
 {
 printf(“Enter command (q=quit, n=new,
 l=list): “);

 scanf(“%c”, &command);
 Flush();
 }
 while ((command != ‘q’) && (command != ‘n’)
 && (command != ‘l’));

 printf(“\n----------\n”);
 return(command);
}

/*************************> ReadStruct <*/
struct CDInfo *ReadStruct(void)
{
 struct CDInfo *infoPtr;
 int num;
 char *result;

 infoPtr = malloc(sizeof(struct CDInfo));

 if (infoPtr == NULL)
 {
 printf(“Out of memory!!! Goodbye!\n”);
 exit(0);
 }

 printf(“Enter Artist’s Name: “);
 result = fgets(infoPtr->artist,
 kMaxArtistLength, stdin);

 infoPtr->artist[strlen(infoPtr->artist) -
 1] = ‘\0’;

 printf(“Enter CD Title: “);
 result = fgets(infoPtr->title,
 kMaxTitleLength, stdin);

 infoPtr->title[strlen(infoPtr->title) -
 1] = ‘\0’;

 do
 {
 printf(“Enter CD Rating (1-10): “);
 scanf(“%d”, &num);
 Flush();
 }
 while ((num < 1) || (num > 10));

 infoPtr->rating = num;

 printf(“\n----------\n”);

 return(infoPtr);
}

/***************************> AddToList <*/
void AddToList(struct CDInfo *curPtr)
{
 if (gFirstPtr == NULL)
 gFirstPtr = curPtr;

231

Chapter 10:
Working
with Files

 else
 gLastPtr->next = curPtr;

 gLastPtr = curPtr;
 curPtr->next = NULL;
}

/*****************************> ListCDs <*/
void ListCDs(void)
{
 struct CDInfo *curPtr;

 if (gFirstPtr == NULL)
 {
 printf(“No CDs have been entered yet...
 \n”);

 printf(“\n----------\n”);
 }
 else
 {
 for (curPtr=gFirstPtr; curPtr!=NULL;
curPtr = curPtr->next)

 {
 printf(“Artist: %s\n”,
 curPtr->artist);

 printf(“Title: %s\n”,
 curPtr->title);

 printf(“Rating: %d\n”,
 curPtr->rating);

 printf(“\n----------\n”);
 }
 }
}

/******************************> Flush <*/
void Flush(void)

{
 while (getchar() != ‘\n’)
 ;
}

files.c starts out with these #includes:

#include <stdlib.h>
#include <stdio.h>
#include <c.h>
#include “cdFiler.h”

WriteFile() first checks to see if there are any
CDs to write out. If gFirstPtr is NULL (the value
it was set to in main()), no CDs have been entered
yet and we can just return.

/***************************> WriteFile <*/
void WriteFile(void)
{
 FILE *fp;
 struct CDInfo *infoPtr;
 int num;

 if (gFirstPtr == NULL)
 return;

Next, we’ll open the file cdData for writing. If
fopen() returns NULL, we know it couldn’t open
the file and we’ll print out an error message and
return.

232

Chapter 10:
Working
with Files

 if ((fp = fopen(kCDFileName, “w”))
 == NULL)

 {
 printf(“***ERROR: Could not write CD
 file!”);

 return;
 }

This for loop steps through the linked list, setting
infoPtr to point to the first struct in the list,
then moving it to point to the next struct, and so
on, until infoPtr is equal to NULL. Since the last
struct in our list sets its next pointer to NULL,
infoPtr will be equal to NULL when it points to
the last struct in the list.

 for (infoPtr=gFirstPtr; infoPtr!=NULL;
 infoPtr=infoPtr->next)

 {

Each time through the list, we call fprintf()
to print the artist string followed by a carriage
return and then the title string followed by a
carriage return. Remember, each of these strings was
0-terminated, a requirement if you plan on using the
%s format specifier.

 fprintf(fp, “%s\n”, infoPtr->artist);
 fprintf(fp, “%s\n”, infoPtr->title);

Finally, we convert the rating field to an int
by assigning it to the int num, then print it (as
well as a following carriage return) to the file using
fprintf(). We converted the char to an int
because the %d format specifier was designed to
work with an int, and not a char.

 num = infoPtr->rating;
 fprintf(fp, “%d\n”, num);
 }

Once we finish writing the linked list into the file,
we’ll close the file by calling fclose().

 fclose(fp);
}

ReadFile() starts by opening the file cdData for
reading. If we can’t open the file, we’ll print an error
message and return, leaving the list empty.

/****************************> ReadFile <*/
void ReadFile(void)
{
 FILE *fp;
 struct CDInfo *infoPtr;
 int i;

 if ((fp = fopen(kCDFileName, “r”))
 == NULL)

 {

233

Chapter 10:
Working
with Files

 printf(“***ERROR: Could not read CD
 file!”);

 return;
 }

With the file open, we’ll enter a loop that
continues as long as ReadStructFromFile()
returns true. By using the do-while loop,
we’ll execute the body of the loop before we call
ReadStructFromFile() for the first time. This
is what we want. The body of the loop attempts to
allocate a block of memory the size of a CDInfo
struct. If the malloc() fails, we’ll bail out of the
program.

 do
 {
 infoPtr = malloc(sizeof(struct CDInfo));

 if (infoPtr == NULL)
 {
 printf(“Out of memory!!! Goodbye!\n”);
 exit(0);
 }
 }
 while (ReadStructFromFile(fp, infoPtr));

ReadStructFromFile() will return false
when it hits the end of the file, when it can’t read
another set of CDInfo fields. In that case, we’ll close
the file and free up the last block we just allocated,
since we have nothing to store in it.

 fclose(fp);
 free(infoPtr);
}

ReadStructFromFile() uses a funky form of
fscanf() to read in the first two CDInfo fields.
Notice the use of the format descriptor “%[^\n]\
n”. This tells fscanf() to read characters from
the specified file until it hits a ‘\n’, then to read
the ‘\n’ character and stop. The characters [^\n]
represent the set of all characters except ‘\n’. Note
that the %[format specifier places a terminating 0-
byte at the end of the characters it reads in.

/*******************> ReadStructFromFile <*/
char ReadStructFromFile(FILE *fp, struct
 CDInfo *infoPtr)

{
 int num;

 if (fscanf(fp, “%[^\n]\n”,
 infoPtr->artist) != EOF)

 {

234

Chapter 10:
Working
with Files

The square brackets inside a format specifier give you
much greater control over scanf(). For example,
the format specifier “%[abcd]” would tell
scanf() to keep reading as long as it was reading
either an ‘a’, a ‘b’, a ‘c’, or a ‘d’. The first non-
[abcd] character would be left in the input buffer
for the next part of the format specifier or for the next
read operation to pick up.

If the first character in the set is the character “^”,
The set represents the characters that do not belong
to the set. In other words, the format specifier
“%[^abcd]”, tells scanf() to continue reading
as long as it doesn’t encounter any of the characters
‘a’, ‘b’, ‘c’, or ‘d’.

If fscanf() hits the end of the file, we’ll return
false, letting the calling function know there are
no more fields to read. If fscanf() succeeds,
we’ll move on to the title field using the same
technique. If this second fscanf() fails, we’ve got a
problem, since we read an artist, but couldn’t read
a title.

 if (fscanf(fp, “%[^\n]\n”,
 infoPtr->title) == EOF)

 {
 printf(“Missing CD title!\n”);
 return false;
 }

Assuming we got both the artist and title, we’ll

use a more normal format specifier to pick up an
int and the third carriage return.

 else if (fscanf(fp, “%d\n”, &num) ==
 EOF)

 {
 printf(“Missing CD rating!\n”);
 return false;
 }

Assuming we picked up the int, we’ll use the
assignment operator to convert the int to a char
and add the now complete struct to the list by
passing it to AddToList().

 else
 {
 infoPtr->rating = num;
 AddToList(infoPtr);
 return true;
 }
 }
 else
 return false;
}

235

Chapter 10:
Working
with Files

Working With Files, Part Three
Now that you’ve mastered the basics of file reading
and writing, there are a few more topics worth
exploring before we leave this chapter. We’ll start off
with a look at some additional file opening modes.

The “Update” Modes
So far, you’ve encountered the three basic file
opening modes: “r”, “w”, and “a”. Each of these
modes has a corresponding update mode, specified
by adding a “+” to the mode. The three update
modes, “r+”, “w+”, and “a+”, each allow you to
open a file for both reading and writing.

Though the three update modes do allow you
to switch between read and write operations
without reopening the file, you must first call
either fsetpos(), fseek(), rewind(), or
fflush() before you make the switch.

In other words, if your file is opened using one of the
update modes, you can’t call fscanf() and then
call fprintf() (or call fprintf() follewed
by fscanf()) unless you call fsetpos(),
fseek(), rewind(), or fflush() in between.

There is a great chart in Harbison and Steele’s C: A
Reference Manual which summarizes these modes
quite nicely. My version of the chart is found in
Figure 0.3. Before you read on, take a minute to look
the chart over to be sure you understand the different
file modes.

"r" "w" "a" "r" "w" "a"Mode Rules
Named file must already exist
Existing file's contents are lost
Read OK
Write OK
Write begins at end of file

yes
no

no
no

no

no

no

no
no no

no no

no no
no

no

yes
yes

yes yes
yes

yes yes yes
yes yes

yes
yes

yes

yes

Figure 0.3 My version of the Harbison and Steele file
mode chart showing the rules associated with each of the
6 basic file opening modes.

C also allows a file mode to specify whether a file is
limited to ASCII characters (text mode) or is allowed
to hold any type of data at all (binary mode). To open
a file in text mode, just append a “t” at the end of the
mode string (like “rt” or “w+t”). To open a file in
binary mode, append a “b” at the end of the mode
string (like “rb” or “w+b”).

If you use a file mode that doesn’t include a “t” or a
“b”, check your development environment doc to find
out which of the two types is the default.

Random File Access
So far, each of the examples presented in this chapter
have treated files as a sequential stream of bytes.
When cdFiler read from a file, it started from the
beginning of the file and read the contents, one byte
at a time or in larger chunks, but from the beginning
straight through until the end. This sequential
approach works fine if you intend to read or write
the entire file all at once. As you might have guessed,

236

Chapter 10:
Working
with Files

there is another model.

Instead of starting at the beginning and streaming
through a file, you can use a technique called random
file access. The Standard Library provides a set of
functions that let you reposition the file position
indicator to any location within the file, so that the
next read or write you do occurs exactly where you
want it to.

Imagine a file filled with 00 longs, each of which
was 4 bytes long. The file would be 400 bytes long.
Now suppose you wanted to retrieve the 0th
long in the file. Using the sequential model, you
would have to do 0 reads to get the 0th long into
memory. Unless you read the entire file into memory,
you’ll constantly be reading a series of longs to get
to the long you want.

Using the random access model, you would first
calculate where in the file the 0th long starts, jump
to that position in the file, then just read that long.
To move the file position indicator just before the
0th long, you’d skip over the first 9 longs (9*4 =
36 bytes).

fseek(), ftell(), and rewind()
There are five functions that you’ll need to know
about in order to randomly access your files.
fseek() moves the file position indicator to an
offset you specify, relative to either the beginning of
the file, the current file position, or the end of the file:

int fseek(FILE *fp, long offset, int
wherefrom);

You’ll pass your FILE pointer as the first parameter,
a long offset as the second parameter, and one of
SEEK_SET, SEEK_CUR, or SEEK_END as the third
parameter. SEEK_SET represents the beginning of
the file, SEEK_CUR represents the current position,
and SEEK_END represents the end of the file (in
which case you’ll probably use a negative offset).

ftell() takes a FILE pointer as a parameter
and returns a long containing the value of the file
position indicator:

long ftell(FILE *fp);

rewind() takes a FILE pointer as a parameter and
resets the file position indicator to the beginning of
the file:

void rewind(FILE *fp);

237

Chapter 10:
Working
with Files

The functions fsetpos() and fgetpos() were
introduced as part of ISO C and allow you to work
with file offsets that are larger than will fit in a long.
You can look these two functions up in the usual
places.

dinoEdit.µ
The last sample program in this chapter, dinoEdit,
is a simple example of random file access. It allows
you to edit a series of dinosaur names stored in a file
named My Dinos. Each dinosaur name in My Dinos
is 20 characters long. If the actual dinosaur name is
shorter than 20 characters, the appropriate number
of spaces is added to the name to bring the length up
to 20. This is done to make the size of each item in
the file a fixed length. You’ll see why this is important
as we go through the source code. For now, let’s take
dinoEdit for a spin.

Open the Learn C Projects folder, go inside the
folder 0.03 - dinoEdit, and open and run dinoEdit.
xcode. dinoEdit will count the number of dinosaur
names in the file My Dinos and will use that number
to prompt you for a dinosaur number to edit:

Enter number from 1 to 5 (0 to exit):

Since the file My Dinos has 5 dinosaurs, enter a
number from to 5:

Enter number from 1 to 5 (0 to exit): 3

If you enter the number 3, for example, dinoEdit
will fetch the third dinosaur name from the file, then
ask you to enter a new name for the third dinosaur.
When you type a new name, dinoEdit will
overwrite the existing name with the new name.

Dino #3: Galimimus
Enter new name: Euoplocephalus

Either way, dinoEdit will prompt you to enter
another dinosaur number. Reenter the same number,
so you can verify that the change was made in the
file.

Enter number from 1 to 5 (0 to exit): 3
Dino #3: Euoplocephalus
Enter new name: Galimimus
Enter number from 1 to 5 (0 to exit): 0
Goodbye...

Let’s take a look at the source code...

Stepping Through the Source Code
The file dinoEdit.h starts off with a few #defines.
kDinoRecordSize defines the length of each
dinosaur record. Note that the dinosaur file doesn’t

238

Chapter 10:
Working
with Files

contain any carriage returns, just 5 * 20 = 00 bytes
of pure dinosaur pleasure!

kMaxLineLength defines the length of an array of
chars we’ll use to read in any new dinosaur names.
kDinoFileName is the name of the dinosaur file.

/***********/
/* Defines */
/***********/
#define kDinoRecordSize 20
#define kMaxLineLength 100
#define kDinoFileName “../My Dinos”

Next come the function prototypes for the functions
in main.c.

/********************************/
/* Function Prototypes - main.c */
/********************************/
int GetNumber(void);
int GetNumberOfDinos(void);
void ReadDinoName(int number, char
 *dinoName);

char GetNewDinoName(char *dinoName);
void WriteDinoName(int number, char
 *dinoName);

void Flush(void);
void DoError(char *message);

main.c starts with four #includes. <stdlib.h>
gives us access to the function exit(). <stdio.
h> gives us access to a number of functions,

including printf() and all the file manipulation
functions, types and constants. <string.h> gives
us access to the function strlen(). You’ve already
seen what “dinoEdit.h” brings to the table.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include “dinoEdit.h”

If you ever want to find out which of the functions
you call are dependent on which of your include
files, just comment out the #include statement in
question and recompile. The compiler will spew out
an error message (or a whole bunch of messages)
telling you it couldn’t find a prototype for a function
you called.

main() basically consists of a loop that first
prompts for a dinosaur number at the top of the
loop, then processes the selection in the body of the
loop.

/********************************> main <*/
int main(void)
{
 int number;
 FILE *fp;
 char dinoName[kDinoRecordSize+1];

239

Chapter 10:
Working
with Files

GetNumber() prompts for a dinosaur number
between 0 and the number of dinosaur records in the
file. If the user types 0, we’ll drop out of the loop and
exit the program.

 while ((number = GetNumber()) != 0)
 {

If we made it here, GetNumber() must
have returned a legitimate record number.
ReadDinoName() takes the dinosaur number and
returns the corresponding dinosaur name from the
file. The returned dinosaur name is then printed.

 ReadDinoName(number, dinoName);

 printf(“Dino #%d: %s\n”, number,
 dinoName);

GetNewDinoName() prompts the user for a
new dinosaur name to replace the existing name.
GetNewDinoName() returns true if a name
is entered and false if the user just hit a return.
If the user entered a name, we’ll pass it on to
WriteDinoName(), which will write the name in
the file, overwriting the old name.

 if (GetNewDinoName(dinoName))
 WriteDinoName(number, dinoName);
 }

 printf(“Goodbye...”);

 return 0;
}

GetNumber() starts off with a call to
GetNumberOfDinos(). As its name implies,
GetNumberOfDinos() goes into the dinosaur file
and returns the number of records in the file.

/***************************> GetNumber <*/
int GetNumber(void)
{
 int number, numDinos;

 numDinos = GetNumberOfDinos();

GetNumber() then continuously prompts for a
dinosaur number until the user enters a number
between 0 and numDinos.

 do
 {
 printf(“Enter number from 1 to %d (0 to
 exit): “, numDinos);

 scanf(“%d”, &number);
 Flush();
 }
 while ((number < 0) || (number > numDinos));

 return(number);
}

240

Chapter 10:
Working
with Files

GetNumberOfDinos() starts our file
management adventure. First, we’ll open My Dinos
for reading only.

/*********************> GetNumberOfDinos <*/
int GetNumberOfDinos(void)
{
 FILE *fp;
 long fileLength;

 if ((fp = fopen(kDinoFileName, “r”)) ==
 NULL)

 DoError(“Couldn’t open file...Goodbye!”);

Notice that we’ve passed an error message to a
function called DoError() instead of printing it
with printf(). There are several reasons for doing
this. First, since DoError() executes two lines
of code (calls of printf() and exit()), each
DoError() call saves a bit of code.

More importantly, this approach encapsulates all our
error handling in a single function. If we want to send
all error messages to a log file, all we have to do is edit
DoError() instead of hunting down all the error
messages and attaching a few extra lines of code.

Next, we’ll call fseek() to move the file position
indicator to the end of the file. Can you see what’s
coming?

 if (fseek(fp, 0L, SEEK_END) != 0)
 DoError(“Couldn’t seek to end of file...
 Goodbye!”);

Now we’ll call ftell() to retrieve the current file
position indicator, which also happens to be the file
length! Cool!

 if ((fileLength = ftell(fp)) == -1L)
 DoError(“ftell() failed...Goodbye!”);

Now that we have the file length, we can close the
file.

 fclose(fp);

Finally, we’ll calculate the number of dinosaur
records by dividing the file length by the number of
bytes in a single record. For simplicities’ sake, we’ll
convert the number of records to an int before we
return it. That means that we can’t deal with a file
that contains more than 32,767 dinosaur records.
How many dinosaurs can you name?

 return((int)(fileLength / kDinoRecordSize));
}

241

Chapter 10:
Working
with Files

ReadDinoName() first opens the file for reading
only.

/************************> ReadDinoName <*/
void ReadDinoName(int number, char
 *dinoName)

{
 FILE *fp;
 long bytesToSkip;

 if ((fp = fopen(kDinoFileName, “r”)) ==
 NULL)

 DoError(“Couldn’t open file...Goodbye!”);

Since we’ll be reading the numberth dinosaur, we
have to move the file position indicator to the end of
the (number-1)th dinosaur. That means we’ll need
to skip over (number-1) dinosaur records.

 bytesToSkip = (long)((number-1) *
 kDinoRecordSize);

We’ll use fseek() to skip that many bytes from the
beginning of the file (that’s what the constant SEEK_
SET is for).

 if (fseek(fp, bytesToSkip, SEEK_SET)
 != 0)

 DoError(“Couldn’t seek in file...
 Goodbye!”);

Finally, we’ll call fread() to read the dinosaur
record into the array of chars pointed to by
dinoName. The first fread() parameter is the
pointer to the block of memory where the data will
be read. The second parameter is the number of
bytes in a single record. fread() expects both the
second and third parameters to be of type size_t,
so we’ll use a typecast to make the compiler happy.
Gee, by the time we talk about typecasting in
Chapter , you’ll already be an expert! The third
parameter is the number of records to read in. We
want to read in record of kDinoRecordSize
bytes. The last parameter is the FILE pointer we got
from fopen().

fread() returns the number of records read. Since
we asked fread() to read record, we expect
fread() to return a value of . If that doesn’t
happen, something is dreadfully wrong (perhaps the
file got corrupted, or that Pepsi you spilled in your
hard drive is finally starting to take effect).

 if (fread(dinoName,
 (size_t)kDinoRecordSize,
 (size_t)1, fp) != 1)

 DoError(“Bad fread()...Goodbye!”);

Once again, we close the file when we’re done
working with it.

242

Chapter 10:
Working
with Files

 fclose(fp);
}

GetNewDinoName() starts by prompting for a
new dinosaur name, then calling fgets() to read
in a line of text. We’ll use our strlen() trick to
replace the ‘\n’ with a ‘\0’.

/**********************> GetNewDinoName <*/
char GetNewDinoName(char *dinoName)
{
 char line[kMaxLineLength];
 int i, nameLen;
 char *result;

 printf(“Enter new name: “);

 result = fgets(line, kMaxLineLength,
 stdin);

 line[strlen(line) - 1] = ‘\0’;

Our next step is to fill the dinoName array with
spaces. We’ll then call strlen() to find out how
many characters the user typed in. We’ll copy those
characters back into the dinoName array, leaving
dinoName with a dinosaur name followed by a
bunch of spaces.

 for (i=0; i<kDinoRecordSize; i++)
 dinoName[i] = ‘ ‘;

strlen() takes a pointer to a 0 terminated string

and returns the length of the string, not including the
0 terminator.

 nameLen = strlen(line);

If the user typed a dinosaur name larger than
20 characters long, we’ll only copy the first 20
characters.

 if (nameLen > kDinoRecordSize)
 nameLen = kDinoRecordSize;

Here’s where we copy the characters from line into
dinoName.

 for (i=0; i<nameLen; i++)
 dinoName[i] = line[i];

Finally, we’ll return true to let the calling function
know that the name is ready.

 return true;
}

WriteDinoName() opens the file for reading
and writing. Since we used a mode of “r+” instead
of “w+”, we won’t lose the contents of My Dinos
(in other words, My Dinos won’t be deleted and

243

Chapter 10:
Working
with Files

recreated).

/************************> WriteDinoName <*/
void WriteDinoName(int number, char
 *dinoName)

{
 FILE *fp;
 long bytesToSkip;

 if ((fp = fopen(kDinoFileName, “r+”)) ==
 NULL)

 DoError(“Couldn’t open file...Goodbye!”
);

Next, we calculate the number of bytes we need
to skip to place the file position indicator at the
beginning of the record we want to overwrite, then
call fseek() to move the file position indicator.

 bytesToSkip = (long)((number-1) *
 kDinoRecordSize);

 if (fseek(fp, bytesToSkip, SEEK_SET)
 != 0)

 DoError(“Couldn’t seek in file...
 Goodbye!”);

We then call fwrite() to write the dinosaur record
back out. fwrite() works exactly the same way
as fread(), including returning the number of
records written.

 if (fwrite(dinoName,
 (size_t)kDinoRecordSize,

 (size_t)1, fp) != 1)
 DoError(“Bad fwrite()...Goodbye!”);

 fclose(fp);
}

You’ve seen this function before...

/*******************************> Flush <*/
void Flush(void)
{
 while (getchar() != ‘\n’)
 ;
}

DoError() prints the error message, adding a
carriage return, then exits.

/*****************************> DoError <*/
void DoError(char *message)
{
 printf(“%s\n”, message);
 exit(0);
}

244

Chapter 10:
Working
with Files

What’s Next?
Chapter tackles a wide assortment of
programming topics. We’ll look at typecasting, the
technique used to translate from one type to another.
We’ll cover recursion, the ability of a function to call
itself. We’ll also examine function pointers, variables
that can be used to pass a function as a parameter.

245

Chapter 10:
Working
with Files

Exercises
) What’s wrong with each of the following code

fragments:

 a)
 FILE *fp;

 fp = fopen(“w”, “My Data File”);
 if (fp != NULL)
 printf(“The file is open.”);

 b)
 char myData = 7;
 FILE *fp;

 fp = fopen(“r”, “My Data File”);
 fscanf(“Here’s a number: %d”, &myData);

 c)
 FILE *fp;
 char *line;

 fp = fopen(“My Data File”, “r”);
 fscanf(fp, “%s”, &line);

 d)
 FILE *fp;
 char line[100];

 fp = fopen(“My Data File”, “w”);
 fscanf(fp, “%s”, line);

2) Write a program that reads in and prints a file
with the following format:

4The first line in the file contains a single int.
Call it x.
4All subsequent lines contain a list of x ints
separated by tabs.

For example, if the first number in the file is 6, all
subsequent lines will have 6 ints per line. There
is no limit to the number of lines in the file. Keep
reading and printing lines until you hit the end of
the file.

You can print each int as you encounter it or,
for extra credit, allocate an array of ints large
enough to hold one line’s worth of ints, then
pass that array to a function that prints an int
array.

3) Modify cdFiler so memory for the artist
and title lines is allocated as the lines are
read in. First, you’ll need to change the CDInfo
struct declaration as follows:

 struct CDInfo
 {
 char rating;
 char *artist
 char *title;
 struct CDInfo *next;

 };

246

Chapter 10:
Working
with Files

Not only will you call malloc() to allocate a
CDInfo struct, you’ll also call malloc()
to allocate space for the artist and title
strings. Don’t forget to leave enough space for the
terminating 0 at the end of each string.

C
Chapter 11 Advanced Topics

247

ongratulations! By now you’ve mastered most of the
fundamental C programming concepts. This chapter
will fill you in on some useful C programming
tips, tricks, and techniques that will enhance your
programming skills. We’ll start with a look at
typecasting, C’s mechanism for translating one data
type to another.

What is Typecasting?
There often will be times when you find yourself
trying to convert a variable of one type to a variable
of another type. For example, this code fragment:

float f;
int i;

f = 3.5;
i = f;

printf(“i is equal to %d”, i);

causes this line:

i is equal to 3

to appear in the console window. Notice that the
original value assigned to f was truncated from 3.5
to 3 when the value in f was assigned to i. This
truncation was caused when the compiler saw an
int on the left side and a float on the right side of

248

Chapter 11:
Advanced
Topics

this assignment statement:

i = f;

The compiler automatically translated the float to
an int. In general, the right side of an assignment
statement is always translated to the type on the left
side when the assignment occurs. In this case, the
compiler handled the type conversion for you.

Typecasting is a mechanism you can use to translate
the value of an expression from one type to another.
A typecast, or just plain cast, always takes this form:

(type) expression

where type is any legal C type. In this code
fragment:

float f;

f = 1.5;

the variable f gets assigned a value of .5. In this code
fragment:

float f;

f = (int)1.5;

the value of .5 is cast as an int before being
assigned to f. Just as you might imagine, casting
a float as an int truncates the float, turning
the value .5 into . In this example, two casts were
performed. First, the float value .5 was cast to the
int value . When this int value was assigned to
the float f, the value was cast to the float value
.0.

Cast With Care
Use caution when you cast from one type to another.
Problems can arise when casting between types of a
different size. Consider this example:

int i;
char c;

i = 500;
c = i;

Here, the value 500 is assigned to the int i. So far,
so good. Next, the value in i is cast to a char as it
is assigned to the char c. See the problem? Since
a char can only hold values between -28 and 27,
assigning a value of 500 to c doesn’t make sense.

249

Chapter 11:
Advanced
Topics

So what happens to the extra byte or bytes when a
larger type is cast to a smaller type? The matching
bytes are typecast and the value of any extra bytes is
lost.

For example, when a 2 byte int is cast to a 1 byte
char, the leftmost byte of the int (the byte with
the more significant bits, the bits valued 28 through
215) is dropped and the rightmost byte (the bits valued
20 through 27) is copied into the char.

In this case:

int i;

char c;

i = 500;

c = i;

the int i has a value of 0x01E4, which is hex for
500. After the second assignment, the char ends
up with the value 0xE4, which has a value of 244
if the char was unsigned or -12 if the char is
signed.

Casting With Pointers
Typecasting can also be used when working with
pointers. This notation:

(int *) myPtr

casts the variable myPtr as a pointer to an int.

Casting with pointers allows you to link together
structs of different types. For example, suppose
you declared two struct types, as follows:

struct Dog
{
 struct Dog *next;
} ;

struct Cat
{
 struct Cat *next;
} ;

By using typecasting, you could create a linked list
that contains both Cats and Dogs. Figure . shows
a Dog whose next field points to a Cat. Imagine the
source code you’d need to implement such a linked
list.

myDog myCat

Figure . myDog.next points to myCat. myCat.
next points to NULL.

250

Chapter 11:
Advanced
Topics

Consider this source code:

struct Dog myDog;
struct Cat myCat;

myDog.next = &myCat; /* <--Compiler complains
*/

myCat.next = NULL;

In the first assignment statement, a pointer of one
type is assigned to a pointer of another type. &myCat
is a pointer to a struct of type Cat. myDog.next
is declared to be a pointer to a struct of type Dog.
To make this code compile, we’ll need a typecast:

struct Dog myDog;
struct Cat myCat;

myDog.next = (struct Dog *)(&myCat);
myCat.next = NULL;

If both sides of an assignment operator are
arithmetic types (like float, int, char, etc.), the
compiler will automatically cast the right side of the
assignment to the type of the left side. If both sides
are pointers, you’ll have to perform the typecast
yourself.

There are a few exceptions to this rule. If the pointers
on both sides of the assignment are the same type, no
typecast is necessary. If the pointer on the right side
is either NULL or of type (void *), no typecast is

necessary. Finally, if the pointer on the left side is of
type (void *), no typecast is necessary.

The type (void *) is sort of a wild card for
pointers. It matches up with any pointer type. For
example, here’s a new version of the Dog and Cat
code:

struct Dog
{
 void *next;
} ;

struct Cat
{
 void *next;
} ;

struct Dog myDog;
struct Cat myCat;

myDog.next = &myCat;
myCat.next = NULL;

This code lets Dog.next point to a Cat struct
without a typecast. If you are not sure what type your
pointers will be pointing to, declare your pointers as
(void *).

251

Chapter 11:
Advanced
Topics

Unions
C offers a special data type, known as a union, which
allows a single variable to disguise itself as several
different data types. unions are declared just like
structs. Here’s an example:

union Number
{
 int i;
 float f;
 char *s;
} myNumber;

This declaration creates a union type named
Number. It also creates an individual Number
named myNumber. If this were a struct
declaration, you’d be able to store three different
values in the three fields of the struct. A union,
on the other hand, lets you store one and only one
of the union’s fields in the union. Here’s how this
works.

When a union is declared, the compiler allocates
the space required by the largest of the union’s
fields, sharing that space with all of the union’s
fields. If an int requires 2 bytes, a float 4 bytes,
and a pointer 4 bytes, myNumber is allocated exactly
4 bytes. You can store an int, a float, or a char
pointer in myNumber. The compiler allows you to
treat myNumber as any of these types. To refer to
myNumber as an int, refer to:

myNumber.i

To refer to myNumber as a float, refer to:

myNumber.f

To refer to myNumber as a char pointer, refer to:

myNumber.s

You are responsible for remembering which form the
union is currently occupying.

If you store an int in myUnion by assigning a value
to myUnion.i, you’d best remember that fact.
If you proceed to store a float in myUnion.f,
you’ve just trashed your int. Remember, there are
only 4 bytes allocated to the entire union.

In addition, storing a value as one type then reading
it as another can produce unpredictable results. For
example, if you stored a float in myNumber.f,
the field myNumber.i would not be the same as
(int)(myNumber.f).

One way to keep track of the current state of the
union is to declare an int to go along with the
union, as well as a #define for each of the union’s

252

Chapter 11:
Advanced
Topics

fields:

#define kUnionContainsInt 1
#define kUnionContainsFloat 2
#define kUnionContainsPointer 3

union Number
{
 int i;
 float f;
 char *s;
} myNumber;

int myUnionTag;

If you are currently using myUnion as a float,
assign the value kUnionContainsFloat to
myUnionTag. Later in your code you can use
myUnionTag when deciding which form of the
union you are dealing with:

if (myUnionTag == kUnionContainsInt)
 DoIntStuff(myUnion.i);
else if (myUnionTag == kUnionContainsFloat)
 DoFloatStuff(myUnion.f);
else
 DoPointerStuff(myUnion.s);

Why Use Unions?
In general, unions are most useful when dealing
with two data structures that share a set of common
fields, but differ in some small way. For example,
consider these two struct declarations:

struct Pitcher
{
 char name[40];
 int team;
 int strikeouts;
 int runsAllowed;
} ;

struct Batter
{
 char name[40];
 int team;
 int runsScored;
 int homeRuns;
} ;

These structs might be useful if you were tracking
the pitchers and batters on your favorite baseball
team. Both structs share a set of common fields,
the array of chars named name and the int named
team. Both structs have their own unique fields
as well. The Pitcher struct contains a pair of
fields appropriate for a pitcher, strikeouts and
runsAllowed. The Batter struct contains a
pair of fields appropriate for a batter, runsScored
and homeRuns.

One solution to your baseball-tracking program
would be to maintain two types of structs, a
Pitcher and a Batter. There is nothing wrong
with this approach. There is an alternative, however.
You can declare a single struct that contains the
fields common to Pitcher and Batter, with a

253

Chapter 11:
Advanced
Topics

union for the unique fields:

#define kMets 1
#define kReds 2

#define kPitcher 1
#define kBatter 2

struct Pitcher
{
 int strikeouts;
 int runsAllowed;
} ;

struct Batter
{
 int runsScored;
 int homeRuns;
} ;

struct Player
{
 int type;
 char name[40];
 int team;
 union
 {
 struct Pitcher pStats;
 struct Batter bStats;
 } u;
};

Here’s an example of a Player declaration:

struct Player myPlayer;

Once you created the Player struct, you
would initialize the type field with one of either
kPitcher or kBatter:

myPlayer.type = kBatter;

You would access the name and team fields like this:

myPlayer.team = kMets;
printf(“Stepping up to the plate: %s”,
myPlayer.name);

Finally, you’d access the union fields like this:

if (myPlayer.type == kPitcher)
 myPlayer.u.pStats.strikeouts = 20;

The u was the name given to the union in the
declaration of the Player type. Every Player you
declare will automatically have a union named u
built into it. The union gives you access to either a
Pitcher struct named pStats or a Batter
struct named bStats. The example above
references the strikeouts field of the pStats
field.

unions provide an interesting alternative to

254

Chapter 11:
Advanced
Topics

maintaining multiple data structures. Try them.
Write your next program using a union or two. If
you don’t like them, you can return them for a full
refund.

Function Recursion
Some programming problems are best solved by
repeating a mathematical process. For example, to
learn whether a number is prime (see Chapter 6)
you might step through each of the even integers
between 2 and the number’s square root, one at a
time, searching for a factor. If no factor is found, you
have a prime. The process of stepping through the
numbers between 2 and the number’s square root is
called iteration.

In programming, iterative solutions are fairly
common. Almost every time you use a for loop,
you are applying an iterative approach to a problem.
An alternative to the iterative approach is known
as recursion. In a recursive approach, instead of
repeating a process in a loop, you embed the process
in a function and have the function call itself until
the process is complete. The key to recursion is a
function calling itself.

Suppose you wanted to calculate 5 factorial (also
known as 5!). The factorial of a number is the
product of each integer from up to the number. For
example, 5 factorial is:

5! = 5 * 4 * 3 * 2 * 1 = 120

Using an iterative approach, you might write some
code like this:

255

Chapter 11:
Advanced
Topics

#include <stdio.h>

int main (int argc, const char * argv[])
{
 int i, num;
 long fac;

 num = 5;
 fac = 1;

 for (i=1; i<=num; i++)
 fac *= i;

 printf(“%d factorial is %ld.”, num, fac);

 return 0;
}

If you are interested in trying this code, you’ll find it in
the Learn C Projects folder, under the subfolder named
11.01 - iterate.

If you ran this program, you’d see this line printed in
the console window:

5 factorial is 120.

As you can see from the source code, the algorithm
steps through (iterates) the numbers through
5, building the factorial with each successive
multiplication.

A Recursive Approach
You can use a recursive approach to solve the same
problem. For starters, you’ll need a function to act as
a base for the recursion, a function that will call itself.
There are two things you’ll need to build into your
recursive function. First, you’ll need a mechanism
to keep track of the depth of the recursion. In other
words, you’ll need a variable or parameter that
changes, depending on the number of times the
recursive function calls itself.

Second, you’ll need a terminating condition,
something that tells the recursive function when it’s
gone deep enough. Here’s one version of a recursive
function that calculates a factorial:

long factorial(long num)
{
 if (num > 1)
 num *= factorial(num - 1);

 return(num);
}

factorial() takes a single parameter, the
number whose factorial you are trying to calculate.
factorial() first checks to see whether the
number passed to it is greater than . If not,
factorial() calls itself, passing less than the
number passed into it. This strategy guarantees that,
eventually, factorial() will get called with a
value of .

256

Chapter 11:
Advanced
Topics

Figure .2 shows this process in action. The process
starts with a call to factorial():

result = factorial(3);

long factorial(long num)
{
 if (num > 1)
 num *= factorial(num - 1);

 return(num);
}

long factorial(long num)
{
 if (num > 1)
 num *= factorial(num - 1);

 return(num);
}

long factorial(long num)
{
 if (num > 1)
 num *= factorial(num - 1);

 return(num);
}

3

Fails, since num == 1

2

1

1

2 * 1

3 * 2 * 1

Figure .2 The recursion process caused by the call
factorial(3).

257

Chapter 11:
Advanced
Topics

Take a look at the leftmost factorial() source
code in Figure .2. factorial() is called with a
parameter of 3. The if statement checks to see if the
parameter is greater than . Since 3 is greater than ,
the statement:

num *= factorial(num - 1);

is executed. This statement calls factorial()
again, passing a value of n-1, or 2, as the parameter.
This second call of factorial() is pictured in the
center of Figure .2.

It’s important to understand that this second call
to factorial() is treated just like any other
function call that occurs in the middle of a function.
The calling function’s variables are preserved while
the called function runs. In this case, the called
function is just another copy of factorial().

This second call of factorial() takes a value of
2 as a parameter. The if statement compares this
value to and, since 2 is greater than , executes the
statement:

num *= factorial(num - 1);

This statement calls factorial() yet again,
passing num-1, or , as a parameter. The third call of

factorial() is portrayed on the rightmost side of
Figure .2.

The third call of factorial() starts with an if
statement. Since the input parameter was , the if
statement fails. Thus, the recursion termination
condition is reached. Now, this third call of
factorial() returns a value of .

At this point, the second call of factorial()
resumes, completing the statement:

num *= factorial(num - 1);

Since the call of factorial() returned a value of
, this statement is equivalent to:

num *= 1;

leaving num with the same value it came in with,
namely 2. This second call of factorial() returns
a value of 2.

At this point, the first call of factorial()
resumes, completing the statement:

num *= factorial(num - 1);

Since the second call of factorial() returned a
value of 2, this statement is equivalent to:

258

Chapter 11:
Advanced
Topics

num *= 2;

Since the first call of factorial() started with
the parameter num taking a value of 3, this statement
sets num to a value of 6. Finally, the original call of
factorial() returns a value of 6. This is as it
should be, since 3 factorial = 3 * 2 * = 6.

The recursive version of the factorial program is
in the Learn C Projects folder, under the subfolder
named 11.02 - recurse. Open the project and follow the
program through, line by line.

Binary Trees
As you learn more about data structures, you’ll
discover new applications for recursion. For example,
one of the most-used data structures in computer
programming is the binary tree (Figure .3). As
you’ll see later, binary trees were just made for
recursion. The binary tree is similar to the linked
list. Both consist of structs connected by pointers
embedded in each struct.

Root of
Binary Tree

Figure .3 A binary tree. Why binary? Each node in the
tree contains two pointers.

Linked lists are linear. Each struct in the list is
linked by pointers to the struct behind it and in

259

Chapter 11:
Advanced
Topics

front of it in the list. Binary trees always start with a
single struct, known as the root struct or root
node. Where the linked-list structs we’ve been
working with contain a single pointer, named next,
binary-tree structs each have two pointers, usually
known as left and right.

Check out the binary tree in Figure .3. Notice that
the root node has a left child and a right child. The
left child has its own left child but its right pointer
is set to NULL. The left child’s left child has two
NULL pointers. A node with two NULL pointers is
known as a leaf node or terminal node.

Binary trees are extremely useful. They work
especially well when the data you are trying to sort
has a comparative relationship. This means that if
you compare one piece of data to another, you’ll be
able to judge the first piece as greater than, equal to,
or less than the second piece. For example, numbers
are comparative. Words in a dictionary can be
comparative, if you consider their alphabetical order.
The word iguana is greater than aardvark, but less
than xenophobe.

Here’s how you might store a sequence of words, one
at a time, in a binary tree. We’ll start with this list of
words:

opulent
entropy
salubrious
ratchet

coulomb
yokel
tortuous

Figure .4 shows the word opulent added to the
root node of the binary tree. Since it is the only word
in the tree so far, both the left and right pointers are
set to NULL.

opulent

Figure .4 The word opulent is entered into the binary
tree.

Figure .5 shows the word entropy added to the
binary tree. Since entropy is less than opulent
(i.e., comes before it alphabetically), entropy is
stored as opulent’s left child.

260

Chapter 11:
Advanced
Topics

opulent

entropy

Figure .5 The word entropy is less than the word
opulent and is added as its left child in the binary tree.

Next, Figure .6 shows the word salubrious
added to the tree. Since salubrious is greater
than opulent, it becomes opulent’s right child.

opulent

entropy salubrious

Figure .6 The word salubrious is greater than the
word opulent and is added to its right in the tree.

Figure .7 shows the word ratchet added to the
tree. First, ratchet is compared to opulent.
Since ratchet is greater than opulent we follow
the right pointer. Since there’s a word there already,
we’ll have to compare ratchet to this word. Since
ratchet is less than salubrious, we’ll store it as
salubrious’s left child.

opulent

entropy

ratchet

salubrious

Figure .7 The word ratchet is greater than
opulent but less than salubrious and is placed in
the tree accordingly.

Figure .8 shows the binary tree after the remainder
of the word list has been added. Do you understand
how this scheme works? What would the binary
tree look like if coulomb was the first word on the

261

Chapter 11:
Advanced
Topics

list? The tree would have no left children and would
lean heavily to the right. What if yokel was the
first word entered? As you can see, this particular
use of binary trees depends on the order of the data.
Randomized data that starts with a value close to the
average produces a balanced tree. If the words had
been entered in alphabetical order, you would have
ended up with a binary tree that looked like a linked
list.

opulent

entropy

ratchetcoulomb

salubrious

tortuous

yokel

Figure .8 The words coulomb, yokel, and
tortuous are added to the tree.

Searching Binary Trees
Now that your word list is stored in the binary tree,
the next step is to look up a word in the tree. This is
known as searching the tree. Suppose you wanted

to look up the word tortuous in your tree. You’d
start with the root node, comparing tortuous
with opulent. Since tortuous is greater
than opulent, you’d follow the right pointer to
salubrious. You’d follow this algorithm down to
yokel and finally tortuous.

Searching a binary tree is typically much faster than
searching a linked list. In a linked list, you search
through your list of nodes, one at a time, until you
find the node you are looking for. On average, you’ll
end up searching half of the list. In a list of 100 nodes,
you’ll end up checking 50 nodes on average. In a list
of 1000 nodes, you’ll end up checking 500 nodes on
average.

In a balanced binary tree, you reduce the search
space in half each time you check a node. Without
getting into the mathematics (check Knuth’s The
Art of Computer Programming, Volume 3 for more
info), the maximum number of nodes searched is
approximately log2n, where n is the number of
nodes in the tree. On average, you’ll search log2n/2
nodes. In a list of 100 nodes, you’ll end up searching
3.32 nodes on average. In a list of 1000 nodes, you’ll
end up checking about 5 nodes on average.

As you can see, a binary tree provides a significant
performance advantage over a linked list.

A binary tree that contained just words may not be
that interesting, but imagine that these words were
names of great political leaders. Each struct might

262

Chapter 11:
Advanced
Topics

contain a leader’s name, biographical information,
perhaps a pointer to another data structure
containing great speeches. The value, name, or word
that determines the order of the tree is said to be the
key.

You don’t always search a tree based on the key.
Sometimes, you’ll want to step through every node
in the tree. For example, suppose your tree contained
the name and birth date of each of the presidents
of the United States. Suppose also that the tree
was built using each president’s last name as a key.
Now suppose you wanted to compose a list of all
presidents born in July. In this case, searching the
tree alphabetically won’t do you any good. You’ll
have to search every node in the tree. This is where
recursion comes in.

Recursion and Binary Trees
Binary trees and recursion were made for each other.
To search a tree recursively, the recursing function
has to visit the current node, as well as call itself
with each of its two child nodes. The child nodes
will do the same thing with themselves and their
child nodes. Each part of the recursion stops when a
terminal node is encountered.

Check out this piece of code:

struct Node
{
 int value;

 struct Node *left;
 struct Node *right;
} myNode;

Searcher(struct Node *nodePtr)
{
 if (nodePtr != NULL)
 {
 VisitNode(nodePtr);
 Searcher(nodePtr->left);
 Searcher(nodePtr->right);
 }
}

The function Searcher() takes a pointer to a
tree node as its parameter. If the pointer is NULL,
we must be at a terminal node and there’s no
need to recurse any deeper. If the pointer points
to a Node, the function VisitNode() is called.
VisitNode() performs whatever function you
want performed for each node in the binary tree. In
our current example, VisitNode() could check
to see if the president associated with this node was
born in July. If so, VisitNode() might print the
president’s name in the console window.

Once the node is visited, Searcher() calls itself
twice, once passing a pointer to its left child and once
passing a pointer to its right child. If this version
of Searcher() were used to search the tree in
Figure .8, the tree would be searched in the order
described in Figure .9. This type of search is known
as a preorder search, because the node is visited

263

Chapter 11:
Advanced
Topics

before the two recursive calls take place.

opulent

entropy

ratchetcoulomb

salubrious

tortuous

yokel

1

4

6

7

5

2

3

Figure .9 A preorder search of a binary tree. This search
was produced by the first version of Searcher().

Here’s a slightly revised version of Searcher().
Without looking at Figure .0, can you predict the
order that the tree will be searched? This version of
Searcher() performs an inorder search of the
tree:

Searcher(struct Node *nodePtr)
{
 if (nodePtr != NULL)
 {
 Searcher(nodePtr->left);
 VisitNode(nodePtr);

 Searcher(nodePtr->right);
 }

}

opulent

entropy

ratchetcoulomb

salubrious

tortuous

yokel
1 4

6

7

52

3

Figure .0 An inorder search of the same tree.

Here’s a final look at Searcher(). This version
performs a postorder search of the tree (Figure .):

Searcher(struct Node *nodePtr)
{
 if (nodePtr != NULL)
 {
 Searcher(nodePtr->left);
 Searcher(nodePtr->right);
 VisitNode(nodePtr);
 }
}

264

Chapter 11:
Advanced
Topics

opulent

entropy

ratchetcoulomb

salubrious

tortuous

yokel
1

4

6

7

5

2

3

Figure . A postorder search of the same tree.

Recursion and binary trees are two extremely
powerful programming tools. Learn how to use
them—they’ll pay big dividends.

Function Pointers
Next on the list is the subject of function pointers.
Function pointers are exactly what they sound like:
pointers that point to functions. Up to now, the only
way to call a function was to place its name in the
source code:

MyFunction();

Function pointers give you a new way to call a
function. Function pointers allow you to say,
“Execute the function pointed to by this variable.”
Here’s an example:

int (*myFuncPtr)(float);

This line of code declares a function pointer
named myFuncPtr. myFuncPtr is a pointer to
a function that takes a single parameter, a float,
and that returns an int. The parentheses in the
declaration are all necessary. The first pair tie the * to
myFuncPtr, ensuring that myFuncPtr is declared
as a pointer. The second pair surround the parameter
list and distinguish myFuncPtr as a function
pointer.

Suppose we had a function called
DealTheCards() that took a float as a
parameter and returned an int. This line of code
assigns the address of DealTheCards() to the

265

Chapter 11:
Advanced
Topics

function pointer myFuncPtr:

myFuncPtr = DealTheCards;

Notice that the parentheses were left off the end
of DealTheCards(). This is critical. If the
parentheses were there, the code would have
called DealTheCards(), returning a value to
myFuncPtr. You may also have noticed that the &
operator wasn’t used. When you refer to a function
without using the parentheses at the end, the
compiler knows you are referring to the address of
the function.

Now that you have the function’s address in the
function pointer, there’s only one thing left to do—
call the function. Here’s how it’s done:

int result;

result = (*myFuncPtr)(3.5);

This line calls the function DealTheCards(),
passing it the parameter 3.5, and returning the
function value to the int result. You could also
have called the function this way:

int result;

result = myFuncPtr(3.5);

Some older (non-ISO compliant) compilers can’t
handle this form, but it is easier on the eye.

There’s a lot you can do with function pointers. You
can create an array of function pointers. How about
a binary tree of function pointers? You can pass a
function pointer as a parameter to another function.
Taking this one step further, you can create a function
that does nothing but call other functions. Cool!

For your enjoyment, there’s a function-calling project
in the Learn C Projects folder, inside the .03 -
funcPtr subfolder. The program is pretty simple, but
it should serve as a useful reference when you start
using function pointers in your own programs.

266

Chapter 11:
Advanced
Topics

Initializers
When you declare a variable, you can also provide
an initial value for the variable at the same time. The
format for integer types, floating point types, and
pointers is as follows:

type variable = initializer;

In this case, the initializer is just an expression. Here
are a few examples:

float myFloat = 3.14159;
int myInt = 9 * 27;
int *intPtr = &myInt;

If you plan on initializing a more complex variable,
like an array, struct, or union, you’ll use a slightly
different form of initializer, embedding the elements
used to initialize the variable between pairs of curly
braces. Consider these two array declarations:

int myInts[] = { 10, 20, 30, 40 };
float myFloats[5] = { 1.0, 2.0, 3.0 };

The first line of code declares an array of 4 ints,
setting myInts[0] to 0, myInts[1] to 20,
myInts[2] to 30, and myInts[3] to 40. If you
leave out the array dimension, the compiler makes it
just large enough to contain the listed data.

The second line of code includes a dimension, but
not enough data to fill the array. The first three array
elements are filled with the specified values, but
myFloats[3] and myFloats[4] are initialized
to 0.0.

If you don’t provide enough values in your initializer
list, the compiler initializes all the remaining elements
to their default initialization value. For integers, the
default initialization value is 0. For floats, it’s 0.0.
For pointers, it’s NULL.

Here’s another example:

char s[20] = “Hello”;

What a convenient way to initialize an array of
chars! Here’s another way to accomplish the same
thing:

char s[20] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’
};

Once again, if you leave out the dimension, the
compiler will allocate just enough memory to
hold your text string, including a byte to hold the
0 terminator. If you include the dimension, the
compiler will allocate that many array elements, then
fill the array with whatever data you provide. If you

267

Chapter 11:
Advanced
Topics

provide more data than will fit in the array, your code
won’t compile.

Here’s a struct example:

struct Numbers
{
 int i, j;
 float f;
}

struct Numbers myNums = { 1, 2, 3.01 };

As you can see, the three initializing values were
wrapped in a pair of curly braces. This leaves
myNums.i with a value of , myNums.j with a
value of 2, and myNums.f with a value of 3.0. If you
have a struct, union, or array embedded in your
struct, you can nest a curly-wrapped list of values
inside another list. For example:

struct Numbers
{
 int i, j;
 float f[4];
}

struct Numbers myNums1 = { 1, 2, {3.01, 4.01,
5.01, 6.01} };

The Remaining Operators
If you go back to Chapter 5 and review the list of
operators shown in Figure 5.7, you’ll likely find a few
operators you are not yet familiar with. Most of the
ones we’ve missed were designed specifically to set
the individual bits within a byte. For example, the
| operator (not to be confused with its comrade,
the logical || operator) takes two values and “ORs”
their bits together, resolving to a single value. This
operator is frequently used to set a particular bit to .

Check out this code:

short myShort;

myShort = 0x0001 | myShort;

This code sets the rightmost bit of myShort to , no
matter what its current value. This line of code, based
on the |= operator, does the exact same thing:

myShort |= 0x0001;

The & operator takes two values and “ANDs” their
bits together, resolving to a single value. This
operator is frequently used to set a particular bit to 0
(more frequently referred to as clearing a bit).

Check out this code:

268

Chapter 11:
Advanced
Topics

short myShort;

myShort = 0xFFFE & myShort;

This code sets the rightmost bit of myShort to 0, no
matter what its current value. It might help to think
of 0xFFFE as 1111111111111110 in binary.

This line of code, based on the &= operator, does the
exact same thing:

myShort &= 0xFFFE;

The ^ operator takes two values and “XORs” their
values together. It goes along with the ^= operator.
The ~ operator takes a single value and turns all the
’s into 0’s and all the 0’s into ’s. The &, |, ^, and ~
operators are summarized in Figure .2.

BA A | B A & B
11
01
10
00

11
10
10
0

A ^ B
0
1
1
0

~A
0
0
1
10

Figure .2 A summary of the &, |, ^, and ~ operators.

The previous examples assumed that a short is
two bytes (16 bits) long. Of course, this makes for
some implementation dependent code. Here’s a more
portable example.

This code:

short myShort;

myShort = (~1) & myShort;

sets the rightmost bit of myShort, no matter how
many bytes are used to implement a short. You
could also write this as:

myShort &= (~1);

The last of the binary operators, <<, >>, <<=, and
>>= are used to shift bits within a variable, either
to the left or to the right. The left operand is usually
an unsigned variable and the right operand is
a positive integer specifying how far to shift the
variable’s bits.

For example, this code shifts the bits of myShort 2
bits to the right:

unsigned short myShort = 0x0100;

myShort = myShort >> 2; /* equal to myShort
>>= 2; */

myShort starts off with a value of
0000000100000000 and ends up with a value

269

Chapter 11:
Advanced
Topics

of 0000000001000000 (in hex, that’s 0x0040).
Notice that zeros get shifted in to make up for the
leftmost bits that are getting shifted over and the
rightmost bits are lost when they shift off the end.

These operators were designed to work with
unsigned values only. Check with your compiler to
see how it handles shifting of signed values.

The last two operators we need to cover are the ,
and :? operators. The , operator gives you a way
to combine two expressions into a single expression.
The , operator is binary and both operands are
expressions. The left expression is evaluated first and
the result is discarded. The right expression is then
evaluated and its value is returned.

Here’s an example:

for (i=0, j=0; i<20 && j<40; i++,j+=2)
 DoSomething(i, j);

This for loop is based on two variables instead of
one. Before the loop is entered, i and j are both set
to 0. The loop continues as long as i is less than 20
and j is lass than 40. Each time through the loop, i
is incremented by and j is incremented by 2.

The ? and : operators combine to create something
called a conditional expression. A conditional
expression consists of a logical expression (an

expression that evaluates to either true or false),
followed by the ? operator, followed by a second
expression, followed by the : operator, followed by a
third expression:

logical-expression ? expression2 : expression3

If the logical expression evaluates to true,
expression2 gets evaluated and the entire
expression resolves to the value of expression2.
If the logical expression evaluates to false,
expression3 gets evaluated and the entire
expression resolves to the value of expression3.

Here’s an example:

IsPrime(num) ? DoPrimeStuff(num) :
DoNonPrimeStuff(num);

As you can see, a conditional expression is really a
shorthand way of writing an if-else statement.
Here’s the if-else version of the previous
example:

if (IsPrime(num))
 DoPrimeStuff(num);
else
 DoNonPrimeStuff(num);

Some people like the brevity of the ?: operator

270

Chapter 11:
Advanced
Topics

combination. Others find it hard to read. As always,
make your choice and stick with it.

A word of advice: Don’t overuse the ?: operator. For
example, suppose you wanted to use ?: to generate
a number’s absolute value. You might write code like
this:

int value;

value - (value<0) ? (-value) : (value);

Though this code works, take a look at this code
translated into its if-else form:

int value;

if (value<0)

 value = (-value);

else

 value = (value);

As you can see, the ?: operator can lead you to write
source code that you would otherwise consider pretty
darn silly.

Creating Your Own Types
The typedef statement lets you use existing types
to create brand new types you can then use in
your declarations. You’ll declare this new type just
as you would a variable, except you’ll precede the
declaration with the word typedef and the name
you declare will be the name of a new type. Here’s an
example:

typedef int *IntPointer;

IntPointer myIntPointer;

The first line of code creates a new type named
IntPointer. The second line declares a variable
named myIntPointer which is a pointer to an
int.

Here’s another example:

typedef float (*FuncPtr)(int *);

FuncPtr myFuncPtr;

The first line of code declares a new type named
FuncPtr. The second line declares a variable named
myFuncPtr which is a pointer to a function which
returns a float and which takes a single int as a
parameter.

271

Chapter 11:
Advanced
Topics

Enumerated Types
In a similar vein, the enum statement lets you declare
a new type known as an enumerated type. An
enumerated type is a set of named integer constants,
collected under a single type name. A series of
examples will make this clear.

enum Weekdays
{
 Monday,
 Tuesday,
 Wednesday,
 Thursday,
 Friday
};

enum Weekdays whichDay;

whichDay = Thursday;

This code starts off with an enum declaration. The
enum is given the name Weekdays and consists
of the constants Monday, Tuesday, Wednesday,
Thursday, and Friday. The second line of code
uses this new enumerated type to declare a variable
named whichDay. whichDay is an integer variable
that can take on any of the Weekdays constants, as
evidenced by the last line of code, which assigns the
constant Thursday to whichDay.

Here’s another example:

enum Colors
{
 red,
 green = 5,
 blue,
 magenta,
 yellow = blue + 5
} myColor;

myColor = blue;

This code declares an enumerated type named
Colors. Notice that some of the constants in the
Colors list are accompanied by initializers. When
the compiler creates the enumeration constants,
it numbers them sequentially, starting with 0. In
the previous example, Monday has a value of 0,
Tuesday has a value of , and so on, with Friday
having a value of 4.

In this case, the constant red has a value of 0. But
the constant green has a value of 5. Things move
along from there, with blue and magenta having
values of 6 and 7, respectively. Next, yellow has a
value of blue+5, which is .

This code also declares an enumeration variable
named myColor, which is then assigned a value of
blue.

272

Chapter 11:
Advanced
Topics

You can declare an enumerated type without the type
name:

enum

{

 chocolate,

 strawberry,

 vanilla

};

int iceCreamFlavor = vanilla;

This code declares a series of enumeration constants
with values of 0, 1, and 2. We can assign the constants
to an int, as we did with iceCreamFlavor.
This comes in handy when you need a set of integer
constants but have no need for a tag name.

Static Variables
Normally, when a function exits, the storage for its
variables is freed up and their values are no longer
available. By declaring a local variable as static,
the variable’s value is maintained across multiple calls
of the same function.

Here’s an example:

int StaticFunc(void)
{
 static int myStatic = 0;

 return myStatic++;
}

This function declares an int named myStatic
and initializes it to a value of 0. The function
returns the value of myStatic and increments
myStatic after the return value is determined.
The first time this function is called, it returns 0
and myStatic is left with a value of . The second
time StaticFunc() is called, it returns and
myStatic is left with a value of 2.

Take a few minutes and try this code out for yourself.
You’ll find it in the Learn C Projects folder in the
subfolder 11.04 - static.

One of the keys to this function is the manner in
which myStatic received its initial value. Imagine
if the function looked like this:

273

Chapter 11:
Advanced
Topics

int StaticFunc(void)
{
 static int myStatic;

 myStatic = 0; /* <-- Bad idea.... */

 return myStatic++;
}

Each time through the function, we’d be setting the
value of myStatic back to 0. This function will
always return a value of 0. Not what we want, eh?

The difference between the two functions? The
first version sets the value of myStatic to 0 by
initialization (the value is specified within the
declaration). The second version sets the value of
myStatic to 0 by assignment (the value is specified
after the declaration). If a variable is marked as
static, any initialization is done once and once
only. Be sure you set the initial value of your static
variable in the declaration and not in an assignment
statement.

One way to think of static variables is as global
variables that are limited in scope to a single function.

More on Strings
The last topic we’ll tackle in this chapter is string
manipulation. Although we’ve done some work with
strings in previous chapters, there are a number
of Standard Library functions that haven’t been
covered. Each of these functions requires that
you include the file <string.h>. Here are a few
examples...

strcpy()
strcpy() is declared as follows:

char *strcpy(char *dest, const char *source
);

strcpy() copies the string pointed to by source
into the string pointed to by dest. strcpy()
copies each of the characters in source, including
the terminating 0 byte. That leaves dest as a
properly terminated string. strcpy() returns the
pointer dest.

An important thing to remember about strcpy()
is that you are responsible for ensuring that source
is properly terminated, and that enough memory is
allocated for the string returned in dest. Here’s an
example of strcpy() in action:

274

Chapter 11:
Advanced
Topics

char name[20];

strcpy(name, “Dave Mark”);

This example uses a string literal as the source string.
The string is copied into the array name. The return
value was ignored.

strcat()
strcat() is declared as follows:

char *strcat(char *dest, const char *source
);

strcat() appends a copy of the string pointed to by
source onto the end of the string pointed to by dest.
As was the case with strcpy(), strcat() returns
the pointer dest. Here’s an example of strcat() in
action:

char name[20];

strcpy(name, “Dave “);
strcat(name, “Mark”);

The call of strcpy() copies the string “Dave “
into the array name. The call of strcat() copies
the string “Mark” onto the end of dest, leaving
dest with the properly terminated string “Dave
Mark”. Again, the return value was ignored.

strcmp()
strcmp() is declared as follows:

int strcmp(const char *s1, const char *s2);

strcmp() compares the strings s1 and s2.
strcmp() returns 0 if the strings are identical,
a positive number if s1 is greater than s2, and a
negative number if s2 is greater than s1. The strings
are compared one byte at a time. If the strings are not
equal, the first byte that is not identical determines
the return value.

Here’s a sample:

if (strcmp(“Hello”, “Goodbye”))
 printf(“The strings are not equal!”);

Notice that the if succeeds when the strings are not
equal.

strlen()
strlen() is declared as follows:

size_t strlen(const char *s);

strlen() returns the length of the string pointed
to by s. As an example, this call:

275

Chapter 11:
Advanced
Topics

length = strlen(“Aardvark”);

returns a value of 8, the number of characters in the
string, not counting the terminating zero.

More Standard Library
There is a lot more to the Standard Library than
what we’ve covered in the book. Having made it this
far, consider yourself an official C programmer. You
now have a sworn duty to dig in to the C Standard
Library page we’ve referred to throughout the book.
In case you haven’t bookmarked it yet:

http://www.infosys.utas.edu.au/info/
documentation/C/CStdLib.html

A good place to start is with the functions declared
in <string.h>. Find out what the difference is
between strcmp() and strncmp(). Wander
around. Get to know the Standard Library.

What’s Next?
Chapter 2 answers the question, “Where do you go
from here?” Do you want to learn to create programs
with that special Macintosh look and feel? Would
you like more information on data structures and C
programming techniques? Chapter 2 offers some
suggestions to help you find your programming
direction.

http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html
http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html

276

Chapter 11:
Advanced
Topics

Exercises
) What’s wrong with each of the following code

fragments:

 a)
 struct Dog
 {
 struct Dog *next;
 } ;

 struct Cat
 {
 struct Cat *next;
 } ;

 struct Dog myDog;
 struct Cat myCat;

 myDog.next = (struct Dog)&myCat;
 myCat.next = NULL;

 b)
 int *MyFunc(void);
 typedef int (*FuncPtr)();

 FuncPtr myFuncPtr = MyFunc;

 c)
 union Number
 {
 int i;
 float f;
 char *s;
 } ;

 Number myUnion;

 myUnion.f = 3.5;

 d)
 struct Player
 {
 int type;
 char name[40];
 int team;
 union
 {
 int myInt;
 float myFloat;
 } u;
 } myPlayer;

 myPlayer.team = 27;
 myPlayer.myInt = -42;
 myPlayer.myFloat = 5.7;

 e)
 int *myFuncPtr(int);

 myFuncPtr = main;
 *myFuncPtr();

277

Chapter 11:
Advanced
Topics

 f)
 char s[20];

 strcpy(s, “Hello “);

 if (strcmp(s, “Hello”))
 printf(“The strings are the same!”);

 g)
 char *s;

 s = malloc(20);
 strcpy(“Heeeers Johnny!”, s);

 h)
 char *s;

 strcpy(s, “Aardvark”);

 i)
 void DoSomeStuff(void)
 {
 /* stuff done here */
 }

 int main(void)
 {
 int ii;

 for (ii = 0; ii < 10; ii++)
 DoSomeStuff;

 return 0;
 }

2) Write a program that reads in a series of integers
from a file, storing the numbers in a binary tree in
the same fashion as the words were stored earlier
in the chapter. Store the first number as the root
of the tree. Next, store the second number in
the left branch if it is less than the first number,
right branch if it is greater than or equal to the
first number. Continue this process until all the
numbers are stored in the tree.

 Now write a series of functions that print the
contents of the tree using preorder, inorder, and
postorder recursive searches.

N
Chapter 12 Where Do I Go From Here?

278

ow that you’ve mastered the fundamentals of C,
you’re ready to dig into the specifics of Macintosh
programming. As you’ve run the example programs
in the previous chapters, you’ve probably noticed that
none of the programs sport the look and feel that
make a Mac program a Mac program.

For one thing, all of the interaction between you
and your program focuses on the keyboard and
the console window. None of the programs take
advantage of the mouse. None offer color graphics,
pull-down menus, buttons, checkboxes, scrolling
windows or any of the thousand things that make
Mac OS X applications so special. These things are
all part of the Macintosh user interface.

The Macintosh User Interface
User interface is the part of your program that
interacts with the user. So far, your user interface
skills have focused on writing to and reading
from the console window, using functions such
as printf(), scanf(), and getchar(). The
advantage of this type of user interface is that each
of the aforementioned functions is available on every
machine that supports the C language. Programs
written using the Standard C Library are extremely
portable.

On the down side, console-based user interfaces tend
to be limited. With a console-based interface, you
can’t use an elegant graphic to make a point. Text-
based interfaces can’t provide animation or digital
sound. In a nutshell, the console-based interface is
simple and, at the same time, simple to program.
Mac OS X’s graphical user interface (GUI) offers an
elegant, more sophisticated method of working with
a computer.

279

Chapter 12:
Where Do I Go
From Here?

Objective C and Cocoa
Your Mac just wouldn’t be the same without
windows, pull-down and pop-up menus, icons,
push buttons, and scroll bars. You can and should
add these user interface elements to your programs.
Fortunately, the set of Apple developer tools you
downloaded and installed at the beginning of this
book include everything you need to build world-
class applications with all the elements that make the
Mac great!

The key to working with these elements is
understanding Objective-C and Cocoa. The
Objective-C language is a superset of C, developed
by the same folks who designed and built Mac OS X.
There are a number of excellent resources available
for learning Objective-C. One of them is right there
on your hard drive.

At the top level of your hard drive, find the Developer
folder, the same one that holds the Xcode application.
Follow this path to find the file named ObjC.pdf:

Developer/Documentation/Cocoa/Conceptual/
ObjectiveC/ObjC.pdf

Another way to find this document is to use the
search field in the upper right corner of your Finder
window. Open a new Finder window, then type objc.
pdf in the search field. You should see something
similar to the result shown in Figure 2.. Click on
the file and the path to it will be shown at the bottom

of the window. You can also double-click on the file
to open it in your default PDF reader.

Figure 2. Finding the Objective C documentation on
your hard drive.

I love this document. It is very well written, detailed
and, best of all, it is free! Take a few minutes to read
through the first few pages. If you feel comfortable
with the language and the tone, you’ve found your
path to learning Objective-C.

If this doc makes your eyes glaze over and you start
to feel a bit gassy, there are plenty of other ways to
learn Objective C. If you like the experience you
had reading this book, check out the sequel from
SpiderWorks (http://www.spiderworks.com), called
Learn Objective-C by Mark Dalrymple. Mark is
one of the smartest people I know and he does an
excellent job explaining the concepts behind the
Objective-C language. Not free, but at $9.95, still a
great deal.

So what’s Objective-C got that regular old C doesn’t?
In a word, objects. Just as a struct brings variables

http://www.spiderworks.com

280

Chapter 12:
Where Do I Go
From Here?

together under a single name, an object can bring
together variables as well as functions, binding them
together under a single class name.

Objects are incredibly powerful. Every part of the
Mac user interface has a set of objects associated
with it. Want to create a new window? Just create a
new window object and the object will take care of
all the housekeeping associated with maintaining
a window. The window object’s functions will
draw the contents of the window for you, perhaps
communicating with other objects to get them to
draw themselves within the window.

There are pull-down menu objects, icon objects,
scrollbar objects, file objects, even objects that can
organize other objects. Chances are, if you can
imagine it, there’s a set of objects that will help you
build it.

Learning Cocoa
Learning Objective-C will teach you the mechanics
of working with objects. Once you get that down,
you’ll turn your attention to Cocoa, Apple’s object
library. Cocoa is an extensive collection of objects
that will allow you to implement pretty much every
aspect of the Mac OS X experience.

As you might expect, Apple’s developer tools contain
some excellent Cocoa documentation. For starters,
check out:

Developer/Documentation/Cocoa/Conceptual/
CocoaOverview/index.html

Again, some excellent doc here, and it’s free.

281

Chapter 12:
Where Do I Go
From Here?

Go Get ‘Em
Well, that’s about it. I hope you enjoyed reading
this book as much as I enjoyed writing it. Above
all, I hope you are excited about your newfound
programming capabilities. By learning C, you’ve
opened the door to an exciting new adventure. You
can move on to Objective-C and Cocoa, tackle web
programming with PHP, move into the Windows
universe with C#, or do it all with Java. There are so
many choices out there. And they are all based on C.

Go on out there and write some code. And keep in
touch!

Appendix A Answers to Selected Exercises

282

Chapter 4

)

283

Appendix A:
Answers to
Selected
Exercises

2)

3)

284

Appendix A:
Answers to
Selected
Exercises

4)

285

Appendix A:
Answers to
Selected
Exercises

Chapter 5

) Find the error in each of the following code
fragments:

a. Missing quotes around “Hello, World”

b. Missing comma between two variables

c. =+ should be += (though this will compile
with some older compilers)

d. Missing 2nd parameter to printf(). Note
that this error won’t be caught by the compiler
and is known as a run-time error.

e. Another run-time error. This time, you
are missing the %d in the first argument to
printf().

f. This time we’ve either got an extra \ or
are missing an n following the \ in the first
printf() parameter.

g. The left and right-hand-side of the
assignment are switched.

h. The declaration of anotherInt is missing.

2) Compute the value of myInt after each code
fragment is executed:

a. 70

b. -6

c. -

d. 4

e. -8

f. 2

g. 4

h.

286

Appendix A:
Answers to
Selected
Exercises

Chapter 6

) What’s wrong with each of the following code
fragments?

a. The if statement’s expression should be
surrounded by parentheses.

b. We increment i inside the for loop’s
expression, then decrement it in the body of the
loop. This loop will never end!

c. The while loop has parentheses, but is
missing an expression.

d. The do statement should follow this format:

do

 statement

while (expression) ;

e. Each case in this switch statement
contains a text string, which is illegal. Also, case
default should read default.

f. The printf() will never get called.

g. This is probably the most common mistake
made by C programmers. The assignment
operator (=) is used instead of the logical equality

operator (==). Since the assignment operator is
perfectly legal inside an expression, the compiler
won’t find this error. An annoying little error
you’ll encounter again and again!

h. Once again, this code will compile, but
it likely is not what you wanted. The third
expression in the for loop is usually an
assignment statement - something to move i
towards its terminating condition. The expression
i*20 is useless here, since it doesn’t change
anything.

2) Look in the folder 06.05 - nextPrime2.

3) Look in the folder 06.06 - nextPrime3.

287

Appendix A:
Answers to
Selected
Exercises

Chapter 7

) Predict the result of each of the following code
fragments:

a. Final value is 25.

b. Final value is 52. Try changing the for loop
from 2 to 3. Notice that this generates a number
too large for a 2-byte int to hold. Now change
the for loop from 3 to 4. This generates a
number too large for even a 4-byte int to hold.
Be aware of the size of your types!

c. Final value is 024.

2) Look in the folder 07.06 - power2.

3) Look in the folder 07.07 - nonPrimes.

Chapter 8

) What’s wrong with each of the following code
fragments:

 a. If the char type defaults to signed (very
likely), c can only hold values from -28 to 27.
Even if your char does default to unsigned,
this is dangerous code. At the very least, use an
unsigned char. Even better, use a short,
int, or long.

 b. Use %f, %g, or %e to print the value of a
float, not %d.

 c. The text string “a” is composed of two
characters, both ‘a’ and the terminating zero
byte. The variable c is only a single byte in size.
Even if c were 2 bytes long, you can’t copy a text
string this way. Try copying the text one byte at a
time into a variable large enough to hold the text
string and its terminating zero byte.

 d. Once again, this code uses the wrong
approach to copying a text string, and once again
there is not enough memory allocated to hold the
text string and its zero byte.

 e. The #define of kMaxArraySize must
come before the first non-#define reference to
it.

 f. This definition:

288

Appendix A:
Answers to
Selected
Exercises

 char c[kMaxArraySize];

 creates an array ranging from c[0] to
c[kMaxArraySize-1]. The reference to
c[kMaxArraySize] is out of bounds.

 g. The problem occurs in the line:

 cPtr++ = 0;

 This line assigns the pointer variable cPtr
a value of 0 (making it point to location 0 in
memory) then increments it to (making it point
to location in memory). This code will not
compile. Here’s a more likely scenario:

 *cPtr++ = 0;

 This code sets the char that cPtr points to to 0,
then increments cPtr to point to the next char
in the array.

 h. The problem here is with the statement:

 c++;

 You can’t increment an array name. Even if you
could, if you increment c, you no longer have
a pointer to the beginning of the array! A more
proper approach is to declare an extra char

pointer, assign c to this char pointer, then
increment the copy of c, rather than c itself.

 i. You don’t need to terminate a #define
with a semicolon. This statement defines
“kMaxArraySize” to “200;”, probably not
what we had in mind.

2) Look in the folder 08.08 - dice2.

3) Look in the folder 08.09 - wordCount2.

289

Appendix A:
Answers to
Selected
Exercises

Chapter 9

) What’s wrong with each of the following code
fragments:

 a. The semicolon after employeeNumber is
missing.

 b. This code is really pretty useless. If the first
character returned by getchar() is ‘\n’, the
; will get executed, otherwise the loop just exits.
Try changing the == to != and see what happens.

 c. This code will actually work, since the double-
quotes around the header file name tell the
compiler to search the local directory in addition
to the places it normally searches for system
header files. On the other hand, it is considered
better form to place angle brackets around a
system header file like <stdio.h>.

 d. The name field is missing its type. As it turns
out, this code will compile, but it might not do
what you think it does. Since the type is missing,
the C compiler assumes you want an array of
ints. Even though it compiles, this is bad form!

 e. next and prev should be declared as
pointers.

 f. There are several problems with this code.
First, the while loop is completely useless. Also,
the code should use ‘\0’ instead of 0 (though
that’s really a question of style). Finally, by the

time we get to the printf(), line points
beyond the end of the string!

2) Look in the folder 09.06 - cdTracker2.

3) Look in the folder 09.07 - cdTracker3.

290

Appendix A:
Answers to
Selected
Exercises

Chapter 10

) What’s wrong with each of the following code
fragments:

 a. The arguments to fopen() appear in
reverse order.

 b. Once again, the arguments to fopen()
are reversed. In addition, the first parameter to
fscanf() contains a prompt, as if you were
calling printf(). Also, the second parameter
to fscanf() is defined as a char, yet the %d
format specifier is used, telling fscanf() to
expect an int. This will cause fscanf() to
store an int-sized value in the space allocated
for a char. Not good!

 c. line is declared as a char pointer instead of
as an array of chars. No memory was allocated
for the string being read in by fscanf(). Also,
since line is a pointer, the & in the fscanf()
call shouldn’t be there.

 d. This code is fine except for one problem. The
file is opened for writing, yet we are trying to read
from the file using fscanf().

2) Look in the folder 0.04 - fileReader

3) Look in the folder 0.05 - cdFiler2

Chapter 11

) What’s wrong with each of the following code
fragments:

 a. In the next to last line, the address of myCat
is cast to a struct. Instead, the address should
be cast to a (struct Dog *).

 b. The typedef defines FuncPtr to be
a pointer to a function that returns an int.
MyFunc() is declared to return a pointer to an
int, not an int.

 c. The declaration of Number is missing the
keyword union. Here’s the corrected declaration:

 union Number myUnion;

 d. The Player union fields must be accessed
using u. Instead of myPlayer.myInt, refer to
myPlayer.u.myInt. Instead of myPlayer.
myFloat, refer to myPlayer.u.myFloat.

 e. First off, myFuncPtr is not a function
pointer and not a legal l-value. As is, the
declaration just declares a function named
myFuncPtr. This declaration fixes that problem:

 int (*myFuncPtr)(int);

291

Appendix A:
Answers to
Selected
Exercises

 Next, main() doesn’t take a single int as a
parameter. Besides that, calling main() yourself
is a questionable practice. Finally, to call the
function pointed to by myFuncPtr, use either
myFuncPtr(); or (*myFuncPtr)();
instead of *myFuncPtr();

 f. strcmp() returns zero if the strings are
equal. The if would fail if the strings were the
same. The message passed to printf() is
wrong.

 g. The parameters passed to strcpy() should
be reversed.

 h. No memory was allocated for s. When
strcpy() copies the string, it will be writing
over unintended memory.

 i. This is a common problem that tons of
people, including battle-scarred veterans, run
into. The function call in the loop is not actually a
function call. Instead, the address of the function
DoSomeStuff is evaluated. Because this address
is not assigned to anything or used in any other
way, the result of the evaluation is discarded. The
expression “DoSomeStuff;” is effectively a no-
op, making the entire loop a no-op.

2) Look in the folder .05 - treePrinter.

License Agreement

292

This is a legal agreement between you and SpiderWorks, LLC, a
Virginia Limited Liability Corporation, covering your use of this
electronic book and related materials (the “Book”). Be sure to read the
following agreement before using the Book. BY USING THE BOOK,
YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS
AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS OF THIS
AGREEMENT, DO NOT USE THE BOOK AND DESTROY ALL
COPIES IN YOUR POSSESSION.

Unauthorized distribution, duplication, or resale of all or any portion
of this Book is strictly prohibited. No part of this Book may be
reproduced, stored in a retrieval system, shared or transmitted in any
form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embodied in critical
articles or reviews.

By using the Book, you acknowledge that the Book and all related
products constitute valuable property of SpiderWorks and that all
title and ownership rights to the Book and related materials remain
exclusively with SpiderWorks. SpiderWorks reserves all rights with
respect to the Book and all related products under all applicable laws
for the protection of proprietary information, including, but not
limited to, intellectual properties, trade secrets, copyrights, trademarks
and patents.

The Book is owned by SpiderWorks and is protected by United States
copyright laws and international copyright treaties, as well as other
intellectual property laws and treaties. Therefore, you must treat the
Book like any other copyrighted material. The Book is licensed, not
sold. Paying the license fee allows you the right to use one copy of the

Book on your own personal computer. You may not store the Book on
a network or on any server that makes the Book available to anyone
other than yourself. You may not rent, lease or lend the Book, nor may
you modify, adapt, translate, copy, or scan the Book. If you violate
any part of this agreement, your right to use this Book terminates
automatically and you must then destroy all copies of the Book in your
possession.

The Book and any related materials are provided “AS IS” and without
warranty of any kind and SpiderWorks expressly disclaims all other
warranties, expressed or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular
purpose. Under no circumstances shall SpiderWorks be liable for any
incidental, special, or consequential damages that result from the use
or inablility to use the Book or related materials, even if SpiderWorks
has been advised of the possibility of such damages. In no event shall
SpiderWorks’s liability exceed the license fee paid, if any.

Copyright 2005 SpiderWorks, LLC. “SpiderWorks” is a trademark of
SpiderWorks, LLC. Macintosh is a trademark of Apple Computer, Inc.
Microsoft Windows is a trademark of Microsoft Corporation. All other
third-party names, products and logos referenced within this Book are
the trademarks of their respective owners. All rights reserved.

	Table of Contents
	About This eBook
	How To Use This eBook
	Installing the Project Files
	Chapter 1: Welcome Aboard
	Who is This Book For?

	Chapter 2: Go Get the Tools!
	Chapter 3: Programming Basics
	Programming
	The Programming Process

	Chapter 4: C Basics: Functions
	C Functions
	Calling a Function
	ISO C and the Standard Library
	Same Program, Two Functions
	Another Example
	Generating Some Errors
	C is Case Sensitive
	Exercises

	Chapter 5: C Basics: Variables and Operators
	An Introduction to Variables
	Operators
	Using Parentheses ()
	Operator Precedence
	Sample Programs
	Sprucing Up Your Code
	Exercises

	Chapter 6: Controlling Your Program's Flow
	Flow Control
	Expressions
	Statements
	Exercises

	Chapter 7: Pointers and Parameters
	What is a Pointer?
	Pointer Basics
	Function Parameters
	What Does All This Have to Do with Pointers?
	Global Variables and Function Returns
	More Sample Programs
	Exercises

	Chapter 8: Variable Data Types
	Other Data Types
	Working With Characters
	Arrays
	Danger, Will Robinson!!!
	Text Strings
	The #define
	Exercises

	Chapter 9: Design Your Own Data Structures
	Structures
	Model A: Three Arrays
	Back to Model A
	Model B: The Data Structure Approach
	Passing a Struct as a Parameter
	Allocating Your Own Memory
	Working With Linked Lists
	Exercises

	Chapter 10: Working with Files
	What is a File?
	Working With Files, Part One
	Working With Files, Part Two
	Working With Files, Part Three
	Exercises

	Chapter 11: Advanced Topics
	What is Typecasting?
	Unions
	Function Recursion
	Binary Trees
	Function Pointers
	Initializers
	The Remaining Operators
	Creating Your Own Types
	Static Variables
	More on Strings
	Exercises

	Chapter 12: Where Do I Go From Here?
	The Macintosh User Interface
	Go Get ‘Em

	Appendix A: Answers to Selected Exercises
	License Agreement

